Background: The immunogenetic predisposition
may be considered as an important factor for the
development of Type 1 Diabetes Mellitus (T1DM)
in association with the HLA antigens.
Objective:This study was designed to investigate
the role of HLA-class II antigens in the etiology of
type T1DM and in prediction of this disease in
siblings, and its effect on expression of glutamic
acid decarboxylase autoantibodies (GADA).
methods:Sixty children who were newly diagnosed
type 1 diabetes (diagnosed less than five months)
were selected. Their age ranged from 3-17 years.
Another 50 healthy siblings were available for this
study, their ages range from 3-16 years. Eighty
apparently healthy control subjects, matched with
age (4-17) years, sex and ethnic backgrounds
(Iraqi Arabs) underwent the HLA-typing
examination. Finally 50 healthy individuals were
selected randomly to undergo GADA test.
Results:At HLA-class II region, DR3 and DR4
were significantly increased in patients (53.33
vs.26.25% and 50.0 vs. 12.5% respectively) as
compared to controls. In
addition to that, T1DM was significantly associated
with DQ2 (33.33 vs.15%) and DQ3 (40.0 vs.20%)
antigens as compared to controls, suggesting that
these antigens had a role in disease susceptibility,
while the frequency of DR2 and DQ1 antigens were
significantly lowered in patients compared to
controls (6.66 vs.25% and 6.66 vs.22.5%
respectively). These molecules might have
protective effect. In siblings a significant increase
frequency of DR4 antigen (34.0 vs.12.5%) was
observed in comparison to controls, suggesting that
it might be much useful for predicting T1DM in
affected families.Anti-GAD autoantibodies were
present in 50% of Type 1Diabetic children, and in
16% of their siblings. High proportion of GADA
was found in the patients carrying HLA-DR3/DR4
heterozygous.
conclusion:Both the T1DM patients and their
siblings shared the HLA- DQ1 as protective
antigens, while DR3 and DR4 were susceptible one,
and high proportion of GADA was found in the
T1DM patients and siblings carrying HLADR3/DR4 heterozygous
The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show More: The terrestrial snail Eobania vermiculata (O. F. Müller, 1774) were collected from three station in Baghdad Al- Karkh, Iraq between the period from June 2016 to July 2017. Then we studied the life cycle from the egg to maturity. We studied and photographed the external morphology of it’s shell to identified the species. This species was recorded for the first time in Baghdad.
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreDespite their long successful use, synthetic dyes have several problems due to their carcinogenic and toxic effects. Besides providing bright colors, some natural pigments have shown notable antimicrobial activity; thus, they could be utilized as functional dyes in many applications such as making colored antimicrobial textiles. In this work, a yellow pigment produced by Streptomyces thinghirensis AF7 and has a notable antimicrobial activity was used to produce a colored antimicrobial textile. The extracted yellow pigment was subjected to a purification step using silica gel column eluted with di ethyl ether solvent. The FTIR, GC-MS and NMR analysis showed that the colorings in this type of product are due to t
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently
... Show MoreThis paper investigated the fatigue life behavior of two composite materials subjected to different times of shot peening (2, 4 and 6 min).The first material prepared from unsaturated polyester with E-glass reinforcement by 33% volume fraction. While, the second one was prepared from unsaturated polyester with aluminum powder by2.5% volume fraction. The experimental results showed that the improvement in endurance limit was obtained (for the first material) at 2, 4 and 6 min shot peening times where the percentage of maximum improvement was 25% at shot peening time of 6 min. While, the endurance limit of the second material decreased at shot peening times of 2, 4 and 6 min where the percentage of maximum reduction was 29 % at shot peenin
... Show More