Background: Fibromyalgia syndrome (FMS) is the
most common rheumatic cause of diffuse pain and
multiple regional musculoskeletal pain and disability.
Objective: is to assess the contribution of serum
lipoprotein (A) in the pathogenesis of FMS patients.
Methods: One hundred twenty two FMS patients
were compared with 60 healthy control individuals
who were age and sex matched. All FMS features and
criteria are applied for patients and controls; patients
with secondary FMS were excluded. Serum
Lipoprotein (A): [Lp(A)], body mass index (BMI), &
s.lipid profile were determined for both groups.
Results: There was a statistical significant difference
between patients &controls in serum lipoprotein (A)
(P=0.013). Also there was a statistical significant
correlations between serum Lp(A) & FMS patients'
age( r= 0.310, P=0.034 ); but not with: duration(r= -
0.222, P=0.133) , BMI(r= 0.128,P=0.390) & s.lipid
profile ( p> 0.05) of FMS patients.
Conclusion: s.lipoprotein (A) may play an important
role in pathogenesis of FMS patients.
This study was conducted to determine the effect of vitamin A ( 10 mg/kg ) on avearage testis weight and sexual glands ( Prostate and Seminal Vesicle ) for albino male mice treated with Hexavalent chromium ( 1000 ppm ) .The current study 40 mice were divided into fife groups : 1st group treated with distilled water and considered an control group (C) / the 2nd group treated with sesame oil ( T1) / 3rd group was givin hexavalent chromium ( 1000 ppm ) (T2) / 4th group treated with vitamin A ( 10 mg / kg ) and exposed to hexavalent chromium ( 1000 ppm ) (T3) / 5th group treated with vitamin A ( 10 mg kg ) (T4) . The expermint lasted 35 day . the results showed a significant ( P ? 0.05 ) decrease in avearage testis weight and sexual glan
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Abstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreTo create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% vo
... Show MoreThis study was done to evaluate a new technique to determine the presence of methamphetamine in the hair using nano bentonite-based adsorbent as the filler of extraction column. The state of the art of this study was based on the presence of silica in the nano bentonite that was assumed can interact with methamphetamine. The hair used was treated using methanol to extract the presence of methamphetamine, then it was continued by sonicating the hair sample. Qualitative analysis using Marquish reagent was performed to confirm the presence of methamphetamine in the isolate.The hair sample that has been taken in a different period confirmed that this current developing method can be used to analyzed methamphetamine. This m
... Show More