Background: Silymarin is a polyphenolic flavonoid
derived from milk thistle (Silybum marianum) that has
anti-inflammatory, cytoprotective, anticarcinogenic
and antioxidant effects. It has been used medicinally
to treat liver disorders including acute and chronic
viral hepatitis, toxin/drug induced hepatitis, and
alcoholic liver disease.
Objective: To evaluate the antinociceptive effect of
silymarin in experimental animal model of pain.
Methods: The efficacy and dose response effect of
silymarin (125, 250, and 500mg/kg) were assessed
against control using tail flick test in mice as a model
of nociceptive pain. In this model, all doses of
silymarin were given intraperitoneally 15 min before
immersion of tail in hot water 50°C, and Tail Flick
Latency was measured before, and after (15, 30, 60
and 120 min) administration of silymarin.
Result: Silymarin in 250 and 500mg/kg
significantly increase Tail Flick Latency after 15, 30,
60 and 120 min in a dose dependent manner that the
maximum effect seen after 120 min compared to
baseline value.
Conclusion: Silymarin as a herbal drug produce a
significant antinociceptive effect in experimental
animal model of pain, and beside its better
standardization, quality control, and safety profile, in
addition to its availability and relative low cost,
represent a good alternative choice for management of
pain.
Vibration analysis plays a vital role in understanding and analyzing the behavior of the structure. Where, it can be utilized from this analysis in the design process of the structures in different engineering applications, check the quality and safety of the structure under different working conditions. This work presents experimental measurements and numerical solutions to an out of plane vibration of a rectangular plate with a circular hole. Free edges rectangular plates with different circular holes diameters were studied. The effects of hole location on the plate natural frequencies were also investigated. A finite element modeling (using ANSYS Software) has been used to analyze the vibration characteristics of the plates. A good agree
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
The distribution of chilled water flow rate in terminal unit is an important factor used to evaluate the performance of central air conditioning unit. A prototype of A/C unit has been made, which contains three terminal units with a complete set of accessories (3-way valve, 2-way valve, and sensors) to study the effect of the main parameters, such as total water flow rate and chilled water supply temperature with variable valve opening. In this work, 40 tests were carried out. These tests were in two groups, 20 test for 3-way valve case and 20 test for 2-way valve case. These tests were performed at three levels of valve opening, total water flow rate and water supply temperature according to the design matrices establis
... Show MoreThis study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
This study investigated the shear performance of concrete beams with GFRP stirrups vs. traditional steel stirrups. Longitudinal glass fiber‐reinforced polymer (GFRP) bars were used to doubly reinforce the tested beams at both the top and bottom of their cross sections. To accomplish this, several stirrup spacings were provided. Eight beam specimens, measuring 300 × 250 × 2400 mm, were used in an experimental program to test under a two‐point concentrated load with an equal span‐to‐depth ratio until failure. Four beams in Group I have standard mild steel stirrups of 8 mm diameter, while four beams in Group II have GFRP stirrups with the same adopted diameter. The difference betwe
In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreCarbon dioxide geo-sequestration (CGS) into sediments in the form of (gas) hydrates is one proposed method for reducing anthropogenic carbon dioxide emissions to the atmosphere and, thus reducing global warming and climate change. However, there is a serious lack of understanding of how such CO2 hydrate forms and exists in sediments. We thus imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via x-ray micro-computed tomography in 3D in-situ. A substantial amount of gas hydrate (∼17% saturation) was observed, and the stochastically distributed hydrate clusters followed power-law relations with respect to their size distributions and surface area-volume relationships. The layer-
... Show MoreAbstract
Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM) analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fibe
... Show MoreMilling process is a common machining operation that is used in the manufacturing of complex surfaces. Machining-induced residual stresses (RS) have a great impact on the performance of machined components and the surface quality in face milling operations with parameter cutting. The properties of engineering material as well as structural components, specifically fatigue life, deformation, impact resistance, corrosion resistance, and brittle fracture, can all be significantly influenced by residual stresses. Accordingly, controlling the distribution of residual stresses is indeed important to protect the piece and avoid failure. Most of the previous works inspected the material properties, tool parameters, or cutting parameters, bu
... Show More