Background: Bowel preparation prior to
colonic surgery usually includes antibiotic
therapy together with mechanical bowel
preparation which may cause discomfort to the
patients, prolonged hospitalization and water
& electrolyte imbalance.
Objective: to assess whether elective colon
and rectal surgery may be safely performed
without preoperative mechanical bowel
preparation.
Method: the study includes all patients who
had elective large bowel resection at Medical
City – Baghdad Teaching Hospital between
Feb, 2007 to Jan, 2010. Emergency operations
were not included. The patients were randomly
assigned to the 2 study groups (with or without
mechanical bowel preparation.
Results: A total of 165 patients participated
in the study, 82 with mechanical bowel
preparation and 83 without. The 2 groups
were similar in age, sex and type of surgical
procedure. 134 patients (81.2 %) underwent
surgery owing to colorectal cancer & 31
patients (18.8 %) owing to benign disease.
The hospitalization period was longer in the
bowel-prepared group (mean ± SD, 8.2 ± 5.1
days) as compared with the non prepared
group (mean ± SD, 8.0 ± 2.7 days). However,
this difference was not statistically significant.
The time until the 1st bowel movement was
similar between the 2 groups : a mean ± SD of
4.2 ± 1.3 days in the non prepared group as
compared with a men ± SD 4.3 ± 1.1 days in
the prepared group ( P = NS ).
Conclusion: Our results suggest that no
advantage is gained by preoperative
mechanical bowel preparation in elective
colorectal surgery.
Overlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur
... Show MoreAnalysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreResilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixin
... Show MoreThis research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59% have been achieved for reinforced RPC contains 910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w
... Show MoreThe compounding of polyvinyl chloride (PVC) with two types of fillers and some additives were studied for the manufacturing of acid resistant tile. Various concentrations of two types of fillers namely; calcium carbonate and recycled glass powder were used along with different additives generally categorized as plasticizers, stabilizers, and lubricants were mixed in the standard concentration unit parts per hundred resins (phr) with the PVC as base polymer. The effects of filler materials on acid resistant towered different acids like sulphuric, nitric and hydrochloric at different concentration were studied. Samples which passed the test were further checked for dielectric strength and mechanical properties. It was found that the recycl
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
In this research, we prepared a hybrid composite material of polymeric matrix hand cast method, composite material has been attended from epoxy resin EP as matrix materials reinforced woven roving fiber jute is constant volume fraction (13%), PVC fibers and woven glass fiber with different fraction on the properties of prepared composite materials to PVC fiber and glass fiber, some of mechanical tests were done at room temperature (impact test and banding test). Result shows that the values of (modulus bending elastic and fracture toughness) increase fraction of fiber with the increase of PVC, E-glass, there include (thermal conductivity and dielectric constant). Also experimental result indicated that the (thermal conductivity and diele
... Show More