Background: The highest concentrations of
blood glucose during the day are usually found
postprandialy. Postprandial hyperglycemia (PPH)
is likely to promote or aggravate fasting
hyperglycemia. Evidence in recent years suggests
that PPH may play an important role in functional
& structural disturbances in different body organs
particularly the cardiovascular system.
Objective: To evaluate the effect of (PPH) as a
risk factor for coronary Heart disease in Type 2
diabetic patients.
Methods: Sixty-three type2 diabetic patients
were included in this study. All have controlled
fasting blood glucose, with HbA1c correlation.
They were all followed for five months period
(from May to October 2008). A two hour
postprandial glucose (PPG) was done for all. Other
risk factors were taken in consideration such as
hypertension, obesity, and dyslipidemia. The study
was performed on those patients after at least three
months of controlled fasting blood glucose. ECG
was done to all of them.
Results : Out of the 63 type 2 diabetic patients,
20 had normal PPG and HbA1c levels, one of them
(5%), has ischemic changes on ECG twenty
patients had normal HbA1c & High PPG with 7
(35%) of them showed ischemic changes on ECG
17 patients showed a high PPG and a high HbA1c
with four of them showed ischemic changes on
ECG P<0.05. The remaining 6 patients had normal
PPG but high HbA1c & also only one of them
showed ischemic changes on ECG.
Conclusion This study showed that PPH is a
significant risk factor for ischemic heart disease
(IHD).
Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreDifferent additives are used in drilling fluids when the demanded properties cannot be gotten with clays. Drilling muds needs several additives and materials to give good characteristics. There are local alternatives more suitable for enhancing the rheology and filtration of drilling fluids. An experimental work had been conducted to assess the suitability of using potato starch to enhance rheological properties and filtration in drilling mud. This study investigated the potato starch as a viscosifier and fluid losses agent in drilling fluid. Results from this study proved that rheological properties of potato starch mud increased when pH of drilling fluid is increased. Potato starch could be used to enhance gel strength at low pH
... Show MoreHiding technique for dynamic encryption text using encoding table and symmetric encryption method (AES algorithm) is presented in this paper. The encoding table is generated dynamically from MSB of the cover image points that used as the first phase of encryption. The Harris corner point algorithm is applied on cover image to generate the corner points which are used to generate dynamic AES key to second phase of text encryption. The embedded process in the LSB for the image pixels except the Harris corner points for more robust. Experimental results have demonstrated that the proposed scheme have embedding quality, error-free text recovery, and high value in PSNR.
Urbanization led to significant changes in the properties of the land surface. That appends additional heat loads at the city, which threaten comfort and health of people. There is unclear understanding represent of the relationship between climate indicators and the features of the early virtual urban design. The research focused on simulation capability, and the affect in urban microclimate. It is assumed that the adoption of certain scenarios and strategies to mitigate the intensity of the UHI leads to the improvement of the local climate and reduce the impact of global warming. The aim is to show on the UHI methods simulation and the programs that supporting simulation and mitigate the effect UHI. UHI reviewed has been conducted the for
... Show MoreIn this work ,medical zinc oxide was produced from zinc scraps instead of traditional method which used for medical applications such as skin diseases, Iraq is importing around 50 ton/year for samarra plant the producted powder has apartical size less than 5 micron and the purity was more than 99.98%,also apilot plant of yield capacitiy 15 kg/8hours wsa designed and manufactured .
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show More