Background: The highest concentrations of
blood glucose during the day are usually found
postprandialy. Postprandial hyperglycemia (PPH)
is likely to promote or aggravate fasting
hyperglycemia. Evidence in recent years suggests
that PPH may play an important role in functional
& structural disturbances in different body organs
particularly the cardiovascular system.
Objective: To evaluate the effect of (PPH) as a
risk factor for coronary Heart disease in Type 2
diabetic patients.
Methods: Sixty-three type2 diabetic patients
were included in this study. All have controlled
fasting blood glucose, with HbA1c correlation.
They were all followed for five months period
(from May to October 2008). A two hour
postprandial glucose (PPG) was done for all. Other
risk factors were taken in consideration such as
hypertension, obesity, and dyslipidemia. The study
was performed on those patients after at least three
months of controlled fasting blood glucose. ECG
was done to all of them.
Results : Out of the 63 type 2 diabetic patients,
20 had normal PPG and HbA1c levels, one of them
(5%), has ischemic changes on ECG twenty
patients had normal HbA1c & High PPG with 7
(35%) of them showed ischemic changes on ECG
17 patients showed a high PPG and a high HbA1c
with four of them showed ischemic changes on
ECG P<0.05. The remaining 6 patients had normal
PPG but high HbA1c & also only one of them
showed ischemic changes on ECG.
Conclusion This study showed that PPH is a
significant risk factor for ischemic heart disease
(IHD).
Computations of the relative permeability curves were made through their representation by two functions for wetting and nonwetting phases. Each function contains one parameter that controls the shape of the relative permeability curves. The values of these parameters are chosen to minimize an objective function, that is represented as a weighted sum of the squared differences between experimentally measured data and the corresponding data calculated by a mathematical model simulating the experiment. These data comprise the pressure drop across core samples and the recovery response of the displacing phase. Two mathematical models are constructed in this study to simulate incompressible, one-dimensional, two-phase flow. The first model d
... Show MoreThis encapsulates the general relationship between plant and bacteria in the natural and agricultural ecosystem. It is based on the activities of useful bacteria, such as plant growth-promoting bacteria (PGPRs) and nitrogen-fixing bacteria, in promoting plant growth and plant tolerance to stressful situations regarding pollution, salinity, and drought. The article also mentions that the bacteria maintain plant health by secretion of phytohormones, nitrogen fixation, solubilization of phosphate, and production of antibiotics against pathogenic bacteria. The article also mentions the existing applications of the interaction in sustainable agriculture and bioremediation of contaminated soils.
Abstract
In this paper, fatigue damage accumulation were studied using many methods i.e.Corton-Dalon (CD),Corton-Dalon-Marsh(CDM), new non-linear model and experimental method. The prediction of fatigue lifetimes based on the two classical methods, Corton-Dalon (CD)andCorton-Dalon-Marsh (CDM), are uneconomic and non-conservative respectively. However satisfactory predictions were obtained by applying the proposed non-linear model (present model) for medium carbon steel compared with experimental work. Many shortcomings of the two classical methods are related to their inability to take into account the surface treatment effect as shot peening. It is clear that the new model shows that a much better and cons
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More