Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicine. All patients were treated with megavoltage x-ray with a total dose to the primary lesion was 60-70 Grays (1 Gray = 100 Rads) so we gave 6000-7000 Rads in 6-8 weeks and 50 Grays were applied to the cervical lymphatic chain bilaterally.
Results: 10 out of 44 patients treated have survived more than 5 years (with a 5YSR of 22.7%). In this series of cases, the 5- year overall survival rate is: 60% with stage I, 33.3% with stage II, 28.5% with stage III and 13.7% with stage IV. But, it should be noted that most of them were advanced with stages III and IV accounting for 36 patients i.e 81.8%.
Conclusion: Radiotherapy (RT) is the modality of choice in the treatment of NPC and we must irradiate areas of probable spread with the primary lesion because spread can occur without significant signs and symptoms .The most common histopathological type is undifferentiated carcinoma which is more sensitive to RT than squamous cell carcinoma (scc) or other types of carcinoma.
Also we see that stages III and IV NPC (advanced) comprises high number of the total and the 5-YSR decreases as the patient advances from stage I to stage IV, therefore, early detection and diagnosis is very important.
General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreCryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreThe optical properties for the components CuIn(SexTe1-x)2 thin films with both values of selenium content (x) [0.4 and 0.6] are studied. The films have been prepared by the vacuum thermal evaporation method with thickness of (250±5nm) on glass substrates. From the transmittance and absorbance spectra within the range of wavelength (400-900)nm, we determined the forbidden optical energy gap (Egopt) and the constant (B). From the studyingthe relation between absorption coefficient (α) photon energy, we determined the tails width inside the energy gap.
The results showed that the optical transition is direct; we also found that the optical energy gap increases with annealing temperature and selenium content (x). However, the width of l
Applications of superconductor compounds were considered as modern and important topics, especially these which are exposures to one of the nuclear radiation kinds. So, we gone to investigate the influence of fast neutrons irradiation on electrical and structural characteristics of HgxSb1-xBa2Ca2Cu3O8+δ superconducting compound at (x = 0.7) in ratio. The superconducting specimens were synthesized using solid state technique. Specimens were exposure to the nuclear radiation using fast neutrons with doses (0, 9.06 x1010, 15.3 x 1010 and 18.17 x 1010) n/cm2 respectively. Electrical and X-ray diffraction properties of superconductor specimens before and after irradiation were investigated under standard conditions. Results of X-ray diffraction
... Show More