Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicine. All patients were treated with megavoltage x-ray with a total dose to the primary lesion was 60-70 Grays (1 Gray = 100 Rads) so we gave 6000-7000 Rads in 6-8 weeks and 50 Grays were applied to the cervical lymphatic chain bilaterally.
Results: 10 out of 44 patients treated have survived more than 5 years (with a 5YSR of 22.7%). In this series of cases, the 5- year overall survival rate is: 60% with stage I, 33.3% with stage II, 28.5% with stage III and 13.7% with stage IV. But, it should be noted that most of them were advanced with stages III and IV accounting for 36 patients i.e 81.8%.
Conclusion: Radiotherapy (RT) is the modality of choice in the treatment of NPC and we must irradiate areas of probable spread with the primary lesion because spread can occur without significant signs and symptoms .The most common histopathological type is undifferentiated carcinoma which is more sensitive to RT than squamous cell carcinoma (scc) or other types of carcinoma.
Also we see that stages III and IV NPC (advanced) comprises high number of the total and the 5-YSR decreases as the patient advances from stage I to stage IV, therefore, early detection and diagnosis is very important.
Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreKE Sharquie, JR Al-Rawi, AA Noaimi, HM Al-Hassany, Journal of drugs in dermatology: JDD, 2012 - Cited by 47
Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreThe aim of this work was directed to measure the cosmic ray (CR)
flux and the background (BG) absorbed dose rate for districts of
Baghdad city. The maximum values of CR flux was 2.01
(particle/cm2.s) registered for several Baghdad districts and the
minimum was 0.403 (particle/cm2.s) belonging to Al-kadhimiya
district, whereas the overall average value was 1.24 (particle/cm2.s).
The BG measurements showed that the maximum absorbed dose was
25 nSv/h belonging to Noab AL-Dhbat district and the minimum
absorbed was 19.01 nSv/h observed in Al-Ghadeer district, while
the overall average was 22.56 nSv/h, and this value is small than the
Iraqi permissible limit, which is restricted by Iraqi Center of
Radiation Pr
Deep Learning Techniques For Skull Stripping of Brain MR Images
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More