Preferred Language
Articles
/
jkmc-591
Initial Recognition and Prophecy of Diabetic Nephropathy in Type I Diabetes in a Sample of Iraqi Patients
...Show More Authors

Back ground: Diabetic nephropathy is rapidly becoming the leading cause of end-stage renal disease (ESRD). The onset and course of DN can be ameliorated to a very significant degree if intervention institutes at a point very early in the course of the development of this complication.
Objective: The aim of this study was to characterize risk factors associated with nephropathy in type I diabetes and construct a module for early prediction of diabetic nephropathy (DN) by analyzing their risk factors.
Methods: Case control design of 400 patients with type I diabetes mellitus (IDDM), aged 19-45 years. The cases were 200 diabetic patients with overt protein urea while the controls were 200 diabetic patients with no protein urea or micro-albumin urea.
Results: concurrent occurrence of retinopathy and nephropathy was the main predictors for nephropathy in type I DM patients. Disease duration more than 10 years, uncontrolled hyperglycemia, age more than 30 years and presence of hypertension were the other predictors respectively. Gender and hypercholestremia showed no predictive value in occurrence of DN.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Organizational monitoring and reflex of suffacation of work . An opinions study of sample workers in manufacturing of Isphelt dohuk
...Show More Authors

The study aims to determine the organizational monitoring mechanism in target organization as well as knowing the suffocation of work. The study depends on a questionnaire as a tool of collecting data on distributed random sample involved (45) person from different   levels in manufacturing isphelt Dohuk. The study depends on some hypothesis, the most significant one is that there is not impact of organizational monitoring of suffocation especially on the target organization.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 25 2018
Journal Name
Journal Of Engineering Science And Technology
RIETVELD TEXTURE REFINEMENT ANALYSIS OF LINDE TYPE A ZEOLITE FROM X-RAY DIFFRACTION DATA
...Show More Authors

Scopus (31)
Scopus
Publication Date
Mon Sep 01 2014
Journal Name
19th International Conference On Methods And Models In Automation And Robotics (mmar) 2014
A PSO-optimized type-2 fuzzy logic controller for navigation of multiple mobile robots
...Show More Authors

Scopus (22)
Crossref (20)
Scopus Crossref
Publication Date
Sat Feb 02 2019
Journal Name
Journal Of The College Of Education For Women
Suspicion in the truth that the satisfaction of the student in the criticism of the speech of the poet and the writer to I bin Al-Atheer
...Show More Authors

Suspicion in the truth that the satisfaction of the student in the criticism of the speech of the poet and the writer to I bin Al-Atheer

View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optical Character Recognition Using Active Contour Segmentation
...Show More Authors

Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jul 18 2014
Journal Name
International Journal Of Computer Applications
3-Level Techniques Comparison based Image Recognition
...Show More Authors

Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third

... Show More
View Publication
Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Numeral Recognition Using Statistical Methods Comparison Study
...Show More Authors

The area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.

View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Isolated Word Speech Recognition Using Mixed Transform
...Show More Authors

Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (19)
Scopus Crossref