Background: An important factor influencing duration of breastfeeding is mother’s employment status. The nutritional, immunological, psychological and economic benefits of breastfeeding are well documented. Both UNICEF and the World Health Organization recommend mothers should breastfeed exclusively for at least 6 months.
Objectives: To determine how the employment and the employment variables (type of work, time of return to work and hours of work) influence the breast feeding practices.
Methods: A cross- sectional study was carried out on a sample of 200 employed mothers who had their last child been completed at least tow years. Data were collected using a questionnaire form. It was carried out during the period from 1st of April to 1st of September, 2000, in Baghdad city/ AL-Risafa in 6 different places where employed mothers of young children were expected to be found.
Results: The study revealed that the impact of employment status was noted on the breast feeding initiation time, breast feeding duration and complementary food initiation time. The majority of employed mothers (56.1%) who worked shorter hours breast-feed for longer durations and starts weaning after the fourth months of the infant’s age. The highest percentage of employed mothers (75.9%) with maternity leave of six months or more breast feed for a year or more and (66.1%) start weaning later than the fourth month of the infant’s life.
Conclusions: The study recognizes that employed mothers who worked shorter hours and mothers with longer maternity leaves breast feed for longer durations and start weaning later than mothers who worked long hours and mothers with shorter maternity leaves. It was concluded that most work-places lack accommodations to support breast-feeding.
This review delves deep into the intricate relationship between urban planning and flood risk management, tracing its historical trajectory and the evolution of methodologies over time. Traditionally, urban centers prioritized defensive measures, like dikes and levees, with an emphasis on immediate solutions over long-term resilience. These practices, though effective in the short term, often overlooked broader environmental implications and the necessity for holistic planning. However, as urban areas burgeoned and climate change introduced new challenges, there has been a marked shift in approach. Modern urban planning now emphasizes integrated blue-green infrastructure, aiming to harmonize human habitation with water cycles. Resil
... Show MoreThis study examined >140 relevant publications from the last few years (2018–2021). In this study, classification was reviewed depending on the operation's progress. Electrocoagulation (EC), electrooxidation (EO), electroflotation (EF), electrodialysis (ED), and electro-Fenton (EFN) processes have received considerable attention. The type of action (individual or hybrid) for each electrochemical procedure was evaluated, and statistical analysis was performed to compare them as a new manner of reviewing cited papers providing a massive amount of information efficiently to the readers. Individual or hybrid operation progress of the electrochemical techniques is critical issues. Their design, operation, and maintenance costs vary depending o
... Show MoreCarbon fibre reinforced polymers are widely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behaviour between CFRP laminates and steel members under impact loading. This paper shows the effect of different load rates from quasi-static to 300 × 103 mm/min on this bond. Two types of CFRP laminate, CFK 150/2000 and CFK 200/2000, were used to strengthen steel joints using Araldite 420 epoxy. The results show a significant bond strength enhancemen
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.