Back ground: Skin grafting is the most common form
of reconstructive surgery, and regeneration of
sensations in skin grafts is a complex process
influenced by many factors such as , the thickness of
the graft, the depth of the grafted bed, meshing of the
graft, the condition of the bed and the surrounding
area. So many studies performed on this subject, some
of them clinically based on subjective type of sensation
tests, and others histological to detect the presence of
nerve fibers in the grafted skin
Objectives: To detect return of sensations to split
thickness skin grafts by clinical methods.
Methods: From Oct. 1995 to Oct. 2010, a clinical
prospective study performed in Al wasity Hospital for
reconstructive surgery, Hilla teaching General
Hospital, and Al kindy teaching General Hospital on
recovery of sensations in human split thickness skin
grafts on 200 patients, 400 grafts. There were 120
male, 80 female patients, there ages ranged from20 -61
years with mean of 28 years. The regeneration of
sensation of pain, touch, cold, and warmth, was studied
with the usual clinical methods. We studied; different
graft thicknesses, depth of graft beds, meshing of the
grafts, grafts on early and late wound excisions
Results: in our study the regeneration of sensations
occurred in the following order; pain, touch, cold ,
warmth, and has been found to extend over a period of
16days to 3 months, and sensations improve with time
but never recover completely even after several years.
Conclusion: The recovery of sensation of grafted skin
is a complex process that is influenced by many
factors; some of them are related to the graft, to the
recipient bed, to the patient as a whole, and occurs if
the graft is applied on a sufficiently innervated bed.
The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreObjectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission
... Show MoreIn this work Aquatic plant (Nile rose) was used to study adsorption of industrial dye (safranin-O from aqueous solution within several operation conditions. The dried leaves of Nile rose plant were used as adsorbents safranin-O from aqueous solution after different activations such as wet and dry enhancements. The data show increasing in dye solution removal percentage for both activation methods of the adsorbent and also dye removal percentage that was obtained by using adsorbent without any treatment with the progress contact time. The dye removal percentages at equilibrium time 40 minutes were 88.7% at non-activation, 92.3% at thermal activation, and 98.3% at acidic activation. The samples adsorbents before and after adsorption which wer
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreRemoval of heavy metal ions such as, cadmium ion (Cd 2+) and lead ion (Pb 2+) from aqueous solution onto Eichhornia (water hyacinth) activated carbon (EAC) by physiochemical activation with potassium hydroxide (KOH) and carbon dioxide (CO2) as the activating agents were investigated. The Eichhornia activated carbon was characterized by Brunauer Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) techniques. Whereas, the effect of adsorbent dosage, contact time of pH, and metal ion concentration on the adsorption process have been investigated using the batch process t
Seepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
Medication safety and effectiveness can be improved through interprofessional collaboration. The goals of this study were to measure the degree of physician–pharmacist collaboration within Iraqi governmental healthcare settings and to investigate factors influencing this collaboration.
This cross-sectional study was conducted in Al-Najaf Province using the Collaborative Working Relationship Model and Physician–Pharmacist Collaborative Instrument (PPCI). Four phar
The current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz