Background: In the past, an association between Tuberculosis (TB) and Diabetes Mellitus (DM) was widely accepted, today the potential public health and clinical importance of this relationship seems to be largely ignored. The national clinical and policy guidance in the UK on the central of TB, for example, does not consider the relationship with DM.Objectives: To determine the risk of association between diabetes mellitus and pulmonary TB.Methods: A retrospective study conducted in Ibn Zuhr hospital for chest diseases from Jan 2008 – sep 2010 , included in the study 402 patients with TB divided into diabetic & non diabetic, 96 (23.8%) were diabetic while other 306 were TB not diabetic.Results: Risk of TB among DM patients were clear through its percentage (23.8), female patients increased in compares with non DM, also their age become older with mean change from 36.7 to 46.3 years in diabetic.Conclusions: DM is a big problem worldwide and efforts to diagnose, detect, and treat DM may have a beneficial impact on TB control.
A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreThe performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for perform
... Show MoreThis paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values o
... Show MoreA Modified version of the Generlized standard addition method ( GSAM) was developed. This modified version was used for the quantitative determination of arginine (Arg) and glycine ( Gly) in arginine acetyl salicylate – glycine complex . According to this method two linear equations were solved to obtain the amounts of (Arg) and (Gly). The first equation was obtained by spectrophotometic measurement of the total absorbance of (Arg) and (Gly) colored complex with ninhydrin . The second equation was obtained by measuring the total acid consumed by total amino groups of (Arg) and ( Gly). The titration was carried out in non- aqueous media using perchloric acid in glacial acetic acid as a titrant. The developed metho
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreThe using of recycled aggregates from construction and demolition waste (CDW) can preserve natural aggregate resources, reduce the demand for landfill, and contribute to a sustainable built environment. Concrete demolition waste has been proven to be an excellent source of aggregates for new concrete production. At a technical, economic, and environmental level, roller compacted concrete (RCC) applications benefit various civil construction projects. Roller Compacted Concrete (RCC) is a homogenous mixture that is best described as a zero-slump concrete placed with compacting equipment, uses in storage areas, dams, and most often as a basis for rigid pavements. The mix must be sufficiently dry to support
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More