Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods: MRI of (45 )patients with vertebral compression fracture who underwent MRI of spine during 2 years period ( 2004-2006) in Neuro surgical hospital were retrospectively reviewed by an expedient radiologist , A collapsed vertebra were considered to be acute if there was recent history of back pain of less than 3moths. All MRI sequences needed for spine examination was done( T1WI SE, T2WI GE STIR, and Mylography ) and Gadolinium contrast medium was given to all patients..Results: Of total 45 patients (31male, 14 female, their age range between 18-72years) , The criteria used to differentiate between benign andmalignant collapse spine on MRI was based on the signal intensity, morphology and contrast enhancement for the correct diagnosis. Homogenous and diffuse abnormal signal intensity, posterior convexity and involvement of pedicles are sign that are strongly suggestive of malignant collapse .Conversely, a band like area of low signal intensity adjacent to depressed end plateand preservation of signal intensity of vertebra suggest benign nature of the collapse.Conclusions: We found that MRI features is helpful in differentiation of malignant and benign compression fractures in majority of cases, and if initial MRI finding are equivocal correlation with other images technique, follow up and biopsy in selected cases helpful in arriving correct diagnosis
Electrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
The Optical Fiber sensor based on the Surface Plasmon Resonance (SPR) technology has
been a successful performance sensing and presents high sensitivity. This thesis investigates the
performance of several structure of SPR sensor in field of refractive index and chemical
applications. A structure of Multi-Mode Fiber- Single Mode Fiber- Multi Mode Fiber (MMFSMF-MMF)
. Surface Plasmon Resonance (SPR) technology has been adapted to produce a sensitive optical sensor and Biosensor applications. Simulation analysis ( in Matlab) has been made for SPR for gold (Au) layer with thickness (40 nm) and Polyvinyl Alcohol (PVA) polymer with various thickness (10, 20, 30, 40, 50, 60, 70 and 80 nm) deposited on glass prism type D-ZLAF50_Dense lanthanum flint. The sensitive layer was air (n=1). The analysis was taken for different wavelengths from Ultra-Violet wavelength 100 nm to Near Infra- Red wavelength 1000 nm. The properties of θSPR have been calculated from plotted reflectance against incident angle θincid.. The SPR sensitivity (S) was calculated. The results give efficient detection in chan
... Show MoreIn this work, a pollution-sensitive Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) technology is designed and implemented for sensing refractive indices and concentrations of polluted water . The overall construction of the sensor is achieved by splicing short lengths of PCF (ESM-12) solid core on one side with traditional multimode fiber (MMF) and depositing a gold nanofilm of 50nm thickness on the end of the PCF sensor. The PCF- SPR experiment was carried out with various samples of polluted water including(distilled water, draining water, dirty pond water, chemical water, salty water and oiled water). The location of the resonant wavelength peaks is seen to move to longer wavelengths (red shift)
... Show MoreUncompressed form of the digital images are needed a very large storage capacity amount, as a consequence requires large communication bandwidth for data transmission over the network. Image compression techniques not only minimize the image storage space but also preserve the quality of image. This paper reveal image compression technique which uses distinct image coding scheme based on wavelet transform that combined effective types of compression algorithms for further compression. EZW and SPIHT algorithms are types of significant compression techniques that obtainable for lossy image compression algorithms. The EZW coding is a worthwhile and simple efficient algorithm. SPIHT is an most powerful technique that utilize for image
... Show MoreAloin extracted into alcohol-rich phase with high extraction efficiency,
meanwhile majority polysaccharides, proteins, mineral substances and other
impurities were extracted into salt-rich phase. Partitioning of AQs[Anthraquinones]
is dependent on hydrophobic interaction, hydrogen bond interaction, and salting-out
effect in Aqueous tow –phase system [ATPS]. Aloin was partially purified by using
1-propanol [NH4] 2SO4, the use of this solvent showed high efficiency 90.61%
compared with other solvent [2-propanol and ethanol]. The concentration of aloin
detected by HPLC technique, which reached to 91.84% as focus turns out that there
is compatibility between the sample and the standard in shape and retention time
The computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.
Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,
... Show MoreIn this paper, an adaptive polynomial compression technique is introduced of hard and soft thresholding of transformed residual image that efficiently exploited both the spatial and frequency domains, where the technique starts by applying the polynomial coding in the spatial domain and then followed by the frequency domain of discrete wavelet transform (DWT) that utilized to decompose the residual image of hard and soft thresholding base. The results showed the improvement of adaptive techniques compared to the traditional polynomial coding technique.
In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.