Background: Deep vein thrombosis is a multi causal disease and its one of most common venous disorder, but only one quarter of the patients who have signs and symptoms of a clot in the vein actually have thrombosis and need treatment .The disease can be difficult to diagnose. Venous ultrasound in combination with clinical finding is accurate for venous thromboembolism, its costly because a large number of patients with suspicious signs and symptoms. Venography still the gold standard for venous thromboembolism but it is invasive. The D-dimer increasingly is being seen as valuable tool rolling out venous thromboembolism and sparing low risk patients for further workup.Objectives: this study has designed the role of D-dimer to confirm diagnosis of deep vein thrombosis for patients with positive Doppler and those show no features of thrombosis in Doppler using more accurate and sensitive instrument measuring the concentration of D- dimer.Methods: Thirty patients with deep vein thrombosis diagnosed by Doppler and clinical signs and symptoms (for those with negative Doppler) assessed for D- dimer by automachine cormy accent 200 based on immunoassay which more sensitive than the ordinary methods.Results: Twenty-eight patients out of thirty shows a significant elevation of D-dimer compared to control group which show no elevation in D- dimer level. On other side higher level of D- dimer found in those with negative Doppler as same as level to the patients with positive Doppler.Conclusion: Patients with clinical sign and symptoms of deep vein thrombosis and negative Doppler should be assessed for D- dimer using more sensitive technique based on immunological assay.Key words: deep vein thrombosis (DVT) pulmonary embolism (PE), Doppler
Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
Abstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo
... Show MoreUrban Balance is one of the important indicators that leads to an assessment of the urbanization process in a particular country , province or even a city that is multi-centered. By examining the data related to Anba province, it was found that the value of this indicator is equal to 0.96, which is less than the absolute one, and therefore the urbanization in the province is distributed collectively
The development of a mathematical or statistical model for estimating urban growth is a complex process due to the overlap between indicators or variables that can be adopted to calculate estimate growth rates Al-Qaim city has been considered as an example to develop a statistical method by which changes
... Show MoreThe antidiabetic thiozolidinediones (TZDs) a class of peroxisome proliferators-activated receptor (PPAR) ligands has recently been the focus of much interest for their possible role in regulation of inflammatory response. The present study was designed to evaluate the anti-inflammatory activity of pioglitazone in experimental models of inflammation in rats. The present study was conducted to evaluate the anti inflammatory effect of TZDs (pioglitazone 3mg/Kg) on acute, sub acute and chronic model of inflammation by using egg-albumin and formalin–induced paw edema in 72 rats, relative to reference drugs Dexamethasone 5mg/Kg and Piroxicam 5mg/Kg. In each inflammation model, 24 rats wer
... Show MoreBackground : Double diabetes (DD) is the term used to describe situations in which a patient exhibits characteristics that are a combination of type 1 diabetes mellitus(T1DM) and type 2 Diabetes Mellitus (T2DM) a large epidemiological study found that 25.5% of people with T1D also had the metabolic syndrome. A new protein hormone called asprosin is predominantly released by white adipose tissue. It was initially discovered in 2016 . Asprosin is important diagnoses marker for insulin resistant in diabetes patients ,additionally is very important denotation about early diagnoses of type 2 diabetes. Objectives: The current study aims to find predictive significance of diagnosis a double diabetes by evaluating the asprosin in the blood serum of
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More