Background: Pain is one of the most postoperative complications of surgical wound especially within first 24 hrs. leading to delay hospital discharge, stress gastritis and increasing blood pressure. As wound infiltration with long acting local anesthetic (bupivacaine) has been proved to be effective after orthopedic surgeries especially total hip and knee replacements.Objective: our study was designed to determine theeffectiveness of local infiltration of 0.5% of bupivacainebefore closure of surgical wounds in controllingpostoperative pain and improve patient’s outcome after totalhip and knee replacement surgeries in first 24hrspostoperative period.Methods: Twenty patients from class I (healthy patients) and class II (patients mild systemic diseases) of ASA (American society of anesthetists) undergoing elective orthopaedic surgeries were randomly assigned in two groups and (both of them have general anesthesia); Group A (10patients) received local infiltration of 0.5% bupivacaine before closure of surgical wounds and group B (10 patients) received local infiltration of 0.9% of normal saline. We use uniform technique of anesthesia in both at rest and on passive mobilization by nurses and residents groups. Visual analogue pain scale scores were assessedblinded to analgesic treatment and we check the needs for analgesic drugs post-operative in both groups.Results: Group A showed a significant reduction inpostoperative pain at rest and on mobilization afterinfiltration of 0.5% bupivacaine with short hospital stay andonly 3 patients need for post-operative analgesia ,while allpatients in group B require at least single dose of analgesialike pethidine or non-steroidal anti-inflammatory drugs.Conclusion: The use of 0.5% Bupivacaine by wound infiltration is effective for post-operative pain relief, as it reduces the requirements for additional post-operative analgesia after total hip and knee replacements.
Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreAmorphization of drug has been considered as an attractive approach in improving drug solubility and bioavailability. Unlike their crystalline counterparts, amorphous materials lack the long-range order of molecular packing and present the highest energy state of a solid material. Co-amorphous systems (CAM) are an innovative formulation technique by where the amorphous drugs are stabilized via powerful intermolecular interactions by means of a low molecular co-former.
This review highlights the different approaches in the preparation of co-amorphous drug delivery system, the proper selection of the co-formers. In addition, the recent advances in characterization, Industrial scale and formulation will be discussed.
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More