Background: Educational environment is one of the most important determinants of an effective curriculum. Students' perceptions of their educational environment have a significant impact on their behavior and academic progress. Objective: 1. To identify students’ perception to the educational environment.2. To identify any gender or class level differences in the students’ perception.Type of the study: This is a descriptive cross-sectional studyMethodology: The study was carried out on convenient sample of 150 students of 2nd and 5th grade. This study was done in Al Kindy Medical College, Baghdad, Iraq and conducted during the period from the 1st of October 2013 till the end of March 2014, by using DREEM questionnaire a validated universal diagnostic inventory for assessing the quality of educational environment through direct interview. Inclusion criteria include any student from the 2nd and 5th class who agree to participate in the study. The data was entered into a Microsoft Excel spreadsheet and were analyzed using SPSS version 16. Student t test was done to find out the difference between the mean scores, P<0.05 was considered as statistically significant.Results: For all students (n= 150) the total DREEM score of a maximum possible of 200 was 110.18 , it was more positive than negative overall domain score, which means that the students had positive perception and more positive scores than negative. Total DREEM scores were significantly higher for females (M = 138.8; SD = 17.2) than males (M = 132.3; SD = 20.7), although all domains mean scores were higher for female than male, there was statistical significant difference regarding Students’ perception of learning, Students’ perception of atmosphere and Students’ social self-perception.Regarding the class level, 5th year students gave significantly higher total DREEM ratings (M = 139.1; SD = 17.4) than 2nd year students (M = 135; SD = 18.8). Second year students also gave significantly higher Students’ perception of learning (SPL) ratings than 5th year students and significantly higher Students’ perception of atmosphere ( SPA ) ratings higher than 5th year students. Conclusions: Students assessed the educational environment as more positive than negative;. The greatest difficulty was with ‘students’ perception of learning’.
Among the metaheuristic algorithms, population-based algorithms are an explorative search algorithm superior to the local search algorithm in terms of exploring the search space to find globally optimal solutions. However, the primary downside of such algorithms is their low exploitative capability, which prevents the expansion of the search space neighborhood for more optimal solutions. The firefly algorithm (FA) is a population-based algorithm that has been widely used in clustering problems. However, FA is limited in terms of its premature convergence when no neighborhood search strategies are employed to improve the quality of clustering solutions in the neighborhood region and exploring the global regions in the search space. On the
... Show Moreis at an all-time high in the modern period, and the majority of the population uses the Internet for all types of communication. It is great to be able to improvise like this. As a result of this trend, hackers have become increasingly focused on attacking the system/network in numerous ways. When a hacker commits a digital crime, it is examined in a reactive manner, which aids in the identification of the perpetrators. However, in the modern period, it is not expected to wait for an attack to occur. The user anticipates being able to predict a cyberattack before it causes damage to the system. This can be accomplished with the assistance of the proactive forensic framework presented in this study. The proposed system combines
... Show MoreSkin detection is classification the pixels of the image into two types of pixels skin and non-skin. Whereas, skin color affected by many issues like various races of people, various ages of people gender type. Some previous researchers attempted to solve these issues by applying a threshold that depends on certain ranges of skin colors. Despite, it is fast and simple implementation, it does not give a high detection for distinguishing all colors of the skin of people. In this paper suggests improved ID3 (Iterative Dichotomiser) to enhance the performance of skin detection. Three color spaces have been used a dataset of RGB obtained from machine learning repository, the University of California Irvine (UCI), RGB color space, HSV color sp
... Show MoreThe reaction of 2-amino-benzothiazole with bis [O,O-2,3,O,O – 5,6 – (chloro(carboxylic) methiylidene) ] – L – ascorbic acid (L-AsCl2) gave new product 3-(Benzo[d]Thaizole-2-Yl) – 9-Oxo-6,7,7a,9-Tertrahydro-2H-2,10:4,7-Diepoxyfuro [3,2-f][1,5,3] Dioxazonine – 2,4 (3H) – Dicarboxylic Acid, Hydro-chloride (L-as-am)), which has been insulated and identified by (C, H, N) elemental microanalysis (Ft-IR),(U.v–vis), mass spectroscopy and H-NMR techniques. The (L-as am) ligand complexes were obtained by the reaction of (L-as-am) with [M(II) = Co,Ni,Cu, and Zn] metal ions. The synthesized complexes are characterized by Uv–Visible (Ft –IR), mass spectroscopy molar ratio, molar conductivity, and Magnetic susceptibility techniques. (
... Show MoreCyberbullying is one of the biggest electronic problems that takes multiple forms of harassment using various social media. Currently, this phenomenon has become very common and is increasing, especially for young people and adolescents. Negative comments have a significant and dangerous impact on society in general and on adolescents in particular. Therefore, one of the most successful prevention methods is to detect and block harmful messages and comments. In this research, negative Arabic comments that refer to cyberbullying will be detected using a support vector machine algorithm. The term frequency-inverse document frequency vectorizer and the count vectorizer methods were used for feature extraction, and the results wer
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreA new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show More