Background: Educational environment is one of the most important determinants of an effective curriculum. Students' perceptions of their educational environment have a significant impact on their behavior and academic progress. Objective: 1. To identify students’ perception to the educational environment.2. To identify any gender or class level differences in the students’ perception.Type of the study: This is a descriptive cross-sectional studyMethodology: The study was carried out on convenient sample of 150 students of 2nd and 5th grade. This study was done in Al Kindy Medical College, Baghdad, Iraq and conducted during the period from the 1st of October 2013 till the end of March 2014, by using DREEM questionnaire a validated universal diagnostic inventory for assessing the quality of educational environment through direct interview. Inclusion criteria include any student from the 2nd and 5th class who agree to participate in the study. The data was entered into a Microsoft Excel spreadsheet and were analyzed using SPSS version 16. Student t test was done to find out the difference between the mean scores, P<0.05 was considered as statistically significant.Results: For all students (n= 150) the total DREEM score of a maximum possible of 200 was 110.18 , it was more positive than negative overall domain score, which means that the students had positive perception and more positive scores than negative. Total DREEM scores were significantly higher for females (M = 138.8; SD = 17.2) than males (M = 132.3; SD = 20.7), although all domains mean scores were higher for female than male, there was statistical significant difference regarding Students’ perception of learning, Students’ perception of atmosphere and Students’ social self-perception.Regarding the class level, 5th year students gave significantly higher total DREEM ratings (M = 139.1; SD = 17.4) than 2nd year students (M = 135; SD = 18.8). Second year students also gave significantly higher Students’ perception of learning (SPL) ratings than 5th year students and significantly higher Students’ perception of atmosphere ( SPA ) ratings higher than 5th year students. Conclusions: Students assessed the educational environment as more positive than negative;. The greatest difficulty was with ‘students’ perception of learning’.
The synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show MoreThe main objective of e-learning platforms is to offer a high quality instructing, training and educational services. This purpose would never be achieved without taking the students' motivation into consideration. Examining the voice, we can decide the emotional states of the learners after we apply the famous theory of psychologist SDT (Self Determination Theory). This article will investigate certain difficulties and challenges which face e-learner: the problem of leaving their courses and the student's isolation.
Utilizing Gussian blending model (GMM) so as to tackle and to solve the problems of classification, we can determine the learning abnormal status for e-learner. Our framework is going to increase the students’ moti
For many years, reading rate as word correct per minute (WCPM) has been investigated by many researchers as an indicator of learners’ level of oral reading speed, accuracy, and comprehension. The aim of the study is to predict the levels of WCPM using three machine learning algorithms which are Ensemble Classifier (EC), Decision Tree (DT), and K- Nearest Neighbor (KNN). The data of this study were collected from 100 Kurdish EFL students in the 2nd-year, English language department, at the University of Duhok in 2021. The outcomes showed that the ensemble classifier (EC) obtained the highest accuracy of testing results with a value of 94%. Also, EC recorded the highest precision, recall, and F1 scores with values of 0.92 for
... Show MoreSocial media and news agencies are major sources for tracking news and events. With these sources' massive amounts of data, it is easy to spread false or misleading information. Given the great dangers of fake news to societies, previous studies have given great attention to detecting it and limiting its impact. As such, this work aims to use modern deep learning techniques to detect Arabic fake news. In the proposed system, the attention model is adapted with bidirectional long-short-term memory (Bi-LSTM) to identify the most informative words in the sentence. Then, a multi-layer perceptron (MLP) is applied to classify news articles as fake or real. The experiments are conducted on a newly launched Arabic dataset called the Ara
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreFeature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe
... Show MoreAudio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
Predicting the network traffic of web pages is one of the areas that has increased focus in recent years. Modeling traffic helps find strategies for distributing network loads, identifying user behaviors and malicious traffic, and predicting future trends. Many statistical and intelligent methods have been studied to predict web traffic using time series of network traffic. In this paper, the use of machine learning algorithms to model Wikipedia traffic using Google's time series dataset is studied. Two data sets were used for time series, data generalization, building a set of machine learning models (XGboost, Logistic Regression, Linear Regression, and Random Forest), and comparing the performance of the models using (SMAPE) and
... Show MoreThe coronavirus is a family of viruses that cause different dangerous diseases that lead to death. Two types of this virus have been previously found: SARS-CoV, which causes a severe respiratory syndrome, and MERS-CoV, which causes a respiratory syndrome in the Middle East. The latest coronavirus, originated in the Chinese city of Wuhan, is known as the COVID-19 pandemic. It is a new kind of coronavirus that can harm people and was first discovered in Dec. 2019. According to the statistics of the World Health Organization (WHO), the number of people infected with this serious disease has reached more than seven million people from all over the world. In Iraq, the number of people infected has reached more than tw
... Show More