Background: Educational environment is one of the most important determinants of an effective curriculum. Students' perceptions of their educational environment have a significant impact on their behavior and academic progress. Objective: 1. To identify students’ perception to the educational environment.2. To identify any gender or class level differences in the students’ perception.Type of the study: This is a descriptive cross-sectional studyMethodology: The study was carried out on convenient sample of 150 students of 2nd and 5th grade. This study was done in Al Kindy Medical College, Baghdad, Iraq and conducted during the period from the 1st of October 2013 till the end of March 2014, by using DREEM questionnaire a validated universal diagnostic inventory for assessing the quality of educational environment through direct interview. Inclusion criteria include any student from the 2nd and 5th class who agree to participate in the study. The data was entered into a Microsoft Excel spreadsheet and were analyzed using SPSS version 16. Student t test was done to find out the difference between the mean scores, P<0.05 was considered as statistically significant.Results: For all students (n= 150) the total DREEM score of a maximum possible of 200 was 110.18 , it was more positive than negative overall domain score, which means that the students had positive perception and more positive scores than negative. Total DREEM scores were significantly higher for females (M = 138.8; SD = 17.2) than males (M = 132.3; SD = 20.7), although all domains mean scores were higher for female than male, there was statistical significant difference regarding Students’ perception of learning, Students’ perception of atmosphere and Students’ social self-perception.Regarding the class level, 5th year students gave significantly higher total DREEM ratings (M = 139.1; SD = 17.4) than 2nd year students (M = 135; SD = 18.8). Second year students also gave significantly higher Students’ perception of learning (SPL) ratings than 5th year students and significantly higher Students’ perception of atmosphere ( SPA ) ratings higher than 5th year students. Conclusions: Students assessed the educational environment as more positive than negative;. The greatest difficulty was with ‘students’ perception of learning’.
The Present Work includes the study of the population dynamics of Armadillidium vulgare in AL- Jadiriya region in Baghdad. Monthly samples were collected using a quadrat 0.0625 m2 from November 2007 to November 2008.. The population density of A.vulgare, ranged from 880 ind/m2 in May to251 ind/m2 in January respectively. This species showed high aggregation dispersion in the study area. The sex ratio showed that the number of females were more than that of males and significantly differd (P < 0.05) during the reproductive months. Furthermore, it was found that the juveniles of species were present at most time of the year, But the large sized groups have been observed during summer and spring. And showed a positive linear correlations betwe
... Show MoreThe research involved attempt to inhibit the corrosion of Al-Si-Cu alloy in 2.5x10-3 mol.dm-3 NaOH solution (pH=11.4) by addition of six different inhibitors with three concentrations (1x10-3, 1x10-2, and 0.1 mol.dm-3). These inhibitors include three organic materials (sodium acetate, sodium benzoate, and sodium oxalate) and three inorganic materials (sodium chromate, disodium phosphate, and sodium sulphate). The data that concerning polarization behaviour are calculates which include the corrosion potential (Ecorr) and current density (icorr), cathodic and anodic Tafel slopes (bc & ba), and polarization resistance (Rp). Protection efficiency (P%) and activation energy (Ea) values were calculated for inhibition by the six inhibitors. The
... Show More
The research study focused on the need to clarify the relationship between the Websites of Iraqi Newspapers and their roles in covering the internal crises in Iraq. The selection of Iraqi websites for the newspapers Al-Zaman and Al-Sabah was adopted as one of the most important media with a wide audience; and as a model of hot news and continuous coverage of those sites since 2003 so far. As a result, this necessitated the emergence of new types of methods of editing and writing news stories related to Iraq.
Consequently, the enormous and rapidly changing amount of Iraq news, the process of preparing and creating news has become a complex industry
... Show MoreThe research aims to reveal the methods of visual intertextuality used in the websites of the oriented satellite channel which is Arabic-speaking when addressing normalization with Israel. It also indicates the sources and types of intertextual images, the methodological and semiotic mechanisms for analyzing the intertextuality of news images used on the website of Alhurra satellite channel for the period from 1/6 - 30/8/2022, which included (94) images. The researcher analyzed (37) images with intertextual dimensions, excluding (57) images, which did not carry connotations connected with the inputs and objectives of the research.
The research reach
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show More