Preferred Language
Articles
/
jkmc-355
Laser Diode Enhances Autologous Cartilage Graft's Expansibility

Background: Cartilage forms most of the temporary skeleton of the embryo and provides a model in which most bones developObjective: Using laser therapy to enhance autologous cartilage grafts expansibility and to analyze whether this "enhancement" results in reduced rates of cartilage resorption and greater preservation of normal architectural features compared with "unenhanced" grafts. Type of the study: Cross sectional study.Methods: 24 New Zealand rabbits were divided into two groups (control and treated with 904nm, 10mW diode laser). Auricular cartilage segments measuring 1 cm2 were harvested from both ears of each rabbit, and were implanted in to the subcutaneous region of the left flank. 3 rabbits from each group were anaesthetized at 3, 6, 9 and 12 weeks post operation, implanted cartilages were then peeled. Gross and microscopic examinations were performed to assess size, structural integrity, and architectural features, with comparisons performed between each of the conditions. The results were assessed using T – test. Results: Grafts of control group were softer, more pliable when compared with grafts treated with laser irradiation. The rate of healing, and the quality of the cartilage is more enhanced in the treated group. The mean areas of the harvested cartilage grafts treated with laser therapy were 1.17 cm2 , 1.34 cm2, 1,64 cm2 and 1.76 cm2 respectively, while the corresponding value for the untreated specimens was 0.95 cm2, 0,99 cm2, 1.05 cm2 and 1.08 cm2. The percentage of decrease in size was 14% for the untreated specimens and 0% for the specimens treated with laser therapy for all cases. Conclusions: Our findings demonstrated significant improvements in graft quality using laser therapy. These findings may justify changes in how cartilage grafts are prepared and delivered for facial augmentation procedures to reduce graft resorption and maintain the structural integrity of the cartilage.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Effect of Argon Gas on the Structure and Optical Properties of Nano Titanium Oxide Prepared by PLD

In this research the effect of laser energy by using argon gas on the some physical properties of semiconductor film of TiO2, was studied used Q-Switch Nd:YAG laser in different energies (600-1000) mJ with temperature 100 0C for glass substrate under vacuum nearly 10-3 - - , and by AFM test the roughness of films increased when the energy of laser increased too. The values of roughness between (6.77-13) nm, therefore the thicknesses increased to change from (34.88 - 165.48) nm, so the absorption of film increased because of the thickness of the film increased and we can get the optical energy gap between (3.6-3.9) eV.

View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region from Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Band Energy Outline of NiO:Au /Si Thin-Film for Solar Cell

In this paper the effects of the contact material on the photovoltaic (PV) characteristics of p-NiO:Au/n-Si solar cells fabricated by using the pulsed laser deposition (PLD) technique had been studied. It shown the p-NiO:Au/n-Si could be successfully used to construct and improve the performance of solar cells by using Au. The conversion efficiency was increased comparable with p-NiO/n-Si solar cells. In this case the NiO:Au layer acts as a hole collector as well as a barrier for charge recombination.

View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
The Effect of Polarization Flipping Point on Polarization Dynamics by Optical Feedback Technique

The effect of the optical feedback on the polarization flipping point and hysteresis loop was studied. The polarization flipping occurred at all angles between the polarizer axis and the laser polarization. The polarization flipping point changed by an optical feedback occurred at angles from 0° to 90°. Ability of choosing or controlling the laser polarization was determined by changing the direction of vertical and horizontal polarization by polarizer rotation in the external cavity from 0° to 90°.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
The Performance of Plasmonic Gold and Silver Nanoparticle-Based SERS Sensors

The influence of different types of plasmonic gold (Au-NPs) and silver (Ag-NPs) nanoparticles as well as aging on the performance of Surface-Enhanced Raman Scattering (SERS) sensors were studied. The average diameters of Au-NPs and Ag-NPs were about 23 nm and 15 nm, respectively, with a number of laser pulses of about 200. plasmonic nanoparticles were synthesized by laser ablation process in distilled water using a fixed energy laser fluence of about 14 J/cm2 of Nd-YAG laser, with 1060 nm wavelength and 1 Hz pulse repetition rate. The SERS sensor was carried out by quick drop casting process of plasmonicplasmonic nanoparticles on glass substrates. The morphological aspects and the performance of SERS sensors were investigated

... Show More
Scopus (6)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
Nonlienear Optics Quantum Optics
Narrow Emission Linewidth of Highly-Pure Silicon Nitride Nanoparticles in Different Dye Solutions as Random Gain Media

In this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and

... Show More
View Publication
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication and Characterization of Silver-Doped Nickel Oxide Thin Films for Gas Sensors

The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region From Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimation of SNR Including Quantization Error of Multi-Wavelength Lidar Receiver

 This paper comprises the design and operation of mono-static backscatter lidar station based on a pulsed Nd: YAG laser that operates at multiple wavelengths. The three-color lidar laser transmitter is based on the collinear fundamental 1064 nm, second harmonic 532 nm and a third harmonic 355nm output of a Nd:YAG laser. The most important parameter of lidar especially daytime operations is the signal-to-noise ratio (SNR) which gives some instructions in designing of lidar and it is often limit the effective range. The reason is that noises or interferences always badly affect the measured results. The inversion algorithms have been developed for the study of atmospheric aerosols. Signal-to-noise ratio (SNR) of three-color channel re

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 30 2018
Journal Name
Iraqi Journal Of Science
New Modulation Method in FSO Communication Using Different Wavelengths (650,532,405) nm in the Iraqi Weather

The FSO technique depends on the compatibility of the optical path between the transmitter and the receiver (line-of-sight) to transmit data between two points. FSO system uses the light to provide optical Contact to send and receive various data. This study shows the design of a new optical system for the transmission of voice through free space at wavelengths (650,532,405) nm within point-point technology for specified distances. What distinguishes this work is the quality of the reflection-based modulation based on the Doppler phenomenon. Also, it is interested in studying the different attenuation conditions of the atmosphere at the wavelengths used, in addition to the attenuation caused by the

... Show More
View Publication Preview PDF