Background: The skin functions as a barrier to the external environment, damage to this barrier following a burn disrupts the innate immune system and increases susceptibility to bacterial infection. Objective: This study was carried out to determine the bacterial isolates and study their antimicrobial susceptibility in burned wound infections at one burn's hospital in Baghdad.Type of study:Cross-sectional study.Methods: The bacteria were identified at species level by using Analytic Profile Index (API) system and The antimicrobial susceptibility test was performed according to Kirby-Bauer (disk diffusion) technique.Results: Over a period of one year (from October 2014 to October 2015). Out of 848 patients with different degrees of burns, 186 (19.81%) positive bacterial isolates. Out of 186 bacterial isolates, the isolation rate of Gram positive was 14(7.53%) and Gram negative isolates was 172(92.47%). From those 172 Gram negative bacteria the most frequently isolated bacteria was Pseudomonas aeruginosa 60(32.26%) isolates followed by Acinetobacter baumannii 40(21.51) and all Gram positive bacteria were Staphylococcus aureus 14(7.53). The most effective antibiotic on Staphylococcus aureus isolates was Vancomycin (sensitivity rate was 11(92.86%)), while the highest resistance was to Penicillin and the rate of resistance was 14(100%) followed by Ampicillin 12(85.71%). The most effective antibiotic on Gram-Negative isolates was Imipenem (sensitivity rate was 165(95.93%)) followed by Amikacin (sensitivity rate was 146(84.88%)). On the other hand the Gram negative bacteria in this study were mostly resistant to Ampicillin 164(95.35%) and Amoxicillin-Clavulanic acid 157(91.28). Acinetobacter baumannii and Klebsiella pneumoniae isolates were the mostly resistant isolates than other gram negative bacteria under this study.Conclusion: Pseudomonas aeruginosa was the most frequently isolated bacteria among gram negative bacteria and the most effective antibiotics on Gram-Negative and Staphylococcus aureus isolates were Imipenem and Vancomycin, respectively.
The rate of gas induction was measured in gas-inducing type mechanically agitated contactors provided with two impellers. A reactor of 0.5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of two equal diameter stirrers; the top impeller is shrouded-disk/curved-blade turbine with six evacuated bending blades, while the bottom impeller was disk turbine. The impeller speed was varied in the range of 50 to 800 rpm. The ratio of impeller diameter to tank diameter (D/T) and the submergence (S) of upper impeller from the top were varied. The effects of clearance of lower impeller from the tank bottom (C2) an
... Show MoreReducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi
In recent years, Wireless Sensor Networks (WSNs) are attracting more attention in many fields as they are extensively used in a wide range of applications, such as environment monitoring, the Internet of Things, industrial operation control, electric distribution, and the oil industry. One of the major concerns in these networks is the limited energy sources. Clustering and routing algorithms represent one of the critical issues that directly contribute to power consumption in WSNs. Therefore, optimization techniques and routing protocols for such networks have to be studied and developed. This paper focuses on the most recent studies and algorithms that handle energy-efficiency clustering and routing in WSNs. In addition, the prime
... Show MoreFish are regarded as a crucial indicator of alterations in the aquatic environment due to their position at the apex of the food chain. Monitoring these alterations is crucial for identifying modifications in the aquatic ecosystem. The principal elements influencing fish health are temperature, pH, dissolved oxygen, salinity, pesticide contamination, microplastics, and algal presence. These elements substantially influence fish health regarding development, reproduction, respiration, oxygen stress, and the internal enzymes associated with digesting and other metabolic functions. Alterations in global environmental conditions and anthropogenic pollutants result in modifications to fish populations, their lives, and their behavior and
... Show MoreThe inflammatory response is a crucial aspect of the tissues’ responses to deleterious inflammogens. This complex response involves leukocytes cells such as macrophages, neutrophils, and lymphocytes, also known as inflammatory cells. In response to the inflammatory process, these cells release specialized substances which include vasoactive amines and peptides, eicosanoids, proinflammatory cytokines, and acute-phase proteins, which mediate the inflammatory process by preventing further tissue damage and ultimately resulting in healing and restoration of tissue function. This review discusses the role of the inflammatory cells as well as their by-products in the mediation of inflammatory process. A brief insight into the role of natural an
... Show Morein this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
ENGLISH