Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- sectional study.Methods: Data taken from 114 patients with DVT were analyzed by association rules mining.Immobility was the most important risk factor. Results: Smoking add more risk to immobile, post operative patient. Age per se has no effect.100% of patients with long bone fracture, were immobile. Fever occurred in one third of post operative patients who develop DVT. Conclusions: Association rules mining allow better and faster analysis of more data with an interactive powerful system, which saves time and effort, and discovers the relations among many factors to one or more than one factors. So, we use this method for analysis in this study, and we get the above mentioned relations, which are important for the future management of DVT.
Despite recent attempts to improve safety in the construction sector, this sector is considered dangerous and unsafe. Iraq is one of the emerging nations that suffers from a lack of construction safety management. In 2018, the construction sector in Iraq was responsible for 38% of all industrial accidents. Creating a safety program minimizes this problem by making safety an intrinsic part of construction projects. As a result, this article aims to identify the crucial safety factors that affect the safety performance in Iraqi construction projects. After conducting a critical literature review of the related literature, a list of 35 sub-factors classified into nine categories of main factors was chosen to rank each facto
... Show MoreThe research aims at introducing accountability creative and the factors influencing or helping to Do in Iraqi companies, was launched two assumptions first that he was effect with significance to a number of factors in the direction of departments in Iraqi companies to practice creative accounting , were selected (9) factors believed to researchers it's most influential, and second that there importance of significance for a number of ways or methods to prevent or combat creative accounting , and the purpose of testing hypotheses have been designed questionnaire was distributed to a sample of 48 individual practitioners accountable in Iraqi companies and auditors in charge of auditing the accounts of those companies , after anal
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreArtificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection
... Show MoreAbstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More