Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- sectional study.Methods: Data taken from 114 patients with DVT were analyzed by association rules mining.Immobility was the most important risk factor. Results: Smoking add more risk to immobile, post operative patient. Age per se has no effect.100% of patients with long bone fracture, were immobile. Fever occurred in one third of post operative patients who develop DVT. Conclusions: Association rules mining allow better and faster analysis of more data with an interactive powerful system, which saves time and effort, and discovers the relations among many factors to one or more than one factors. So, we use this method for analysis in this study, and we get the above mentioned relations, which are important for the future management of DVT.
The study investigates the water quality of the Orontes River, which is considered one of the important water recourses in Syria, as it is used for drinking, irrigation, swimming and industrial needs. A database of 660 measurements for 13 parameters concentrations used, were taken from 11 monitoring points distributed along the Orontes River for a period of five years from 2015-2019, and to study the correlation between parameters and their impact on water quality, statistical analysis was applied using (SPSS) program. Cluster analysis was applied in order to classify the pollution areas along the river, and two groups were given: (low pollution - high pollution), where the areas were classified according to the sources of pollution to w
... Show MoreInelastic longitudinal electron scattering form factors for second
excited state C42 in 42Ti nucleus have been calculated using shell
model theory. Fp shell model space with configuration (1f7/2 2p3/2
1f5/2 2p1/2) has been adopted in order to distribute the valence
particles (protons and neutrons) outside an inert core 40Ca. Modern
model space effective interactions like FPD6 and GXPF1 have been
used to generate model space vectors and harmonic oscillator wave
function as a single particle wave function. Discarder space (core
orbits + higher orbits) has been included in (core polarization effect)
as a first order correction in microscopic theory to measure the
interested multipole form factors via the model
The importance of the construction sector and its Great role in the provision of services and infrastructure, reduce poverty, improve living conditions and improve the economic situation in the country, impose attention to the way in which the projects implemented for its improvement and to get successful projects. The objective of this research was to determine the criteria for success as well as critical success and failure factors that have a significant impact on project success. A selected 75 engineer (department managers, project managers and engineers) are asked to fill the questionnaire form, Sixty-seven valid questionnaire forms were analyzed statistically to get search results, which were as follows : Twe
... Show MoreTwo prevalent neurodevelopment disorders in children are attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The fifth version of the Diagnostic and Statistical Manual of Mental Disorders describes autism as a condition marked by limitations in social communication as well as restricted, repetitive behavior patterns. While impulsivity, hyperactivity, and lack of concentration are signs of attention deficit hyperactivity disorder. Boys experience it more frequently than girls do. This study sought for possible factors that put children at risk for autism and attention deficit hyperactivity disorder, and it investigated the association between neurodevelopment disorders in children and parental risk factor i
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreA few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreCryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The
... Show More