Background:Measurement of hemoglobin A1c (A1C) is a renowned tactic for gauging long-term glycemic control, and exemplifies an outstanding influence to the quality of care in diabetic patients.The concept of targets is open to criticism; they may be unattainable, or limit what could be attained, and in addition they may be economically difficult to attain. However, without some form of targeted control of an asymptomatic condition it becomes difficult to promote care at allObjectives: The present article aims to address the most recent evidence-based global guidelines of A1C targets intended for glycemic control in Type 2 Diabetes Mellitus (T2D).Key messages:Rationale for Treatment Targets of A1C includesevidence for microvascular and macrovascular protectionand changes in quality of life. More or less stringent A1C goals may be appropriate for individual patients, andgoals should be individualized based on:duration of diabetes, age/life expectancy, comorbid conditions, CVD or advanced microvascular complications,hypoglycemia unawareness, and individual patient considerations
The inhibition of 3-Benzyl -2-mercaptoquinoizoline -4 (3H)-one (BMQ) on the corrosion of carbon steel in 0.5 M HCl studied by potentionstat polarization methods at 303–333 K. Results obtained show that BMQ act as inhibitor for carbon steel in HCl solution. The inhibition efficiency increase with increase in BMQ concentration. Activation parameters and Gibbs free energy for the adsorption process using Statistical Physics calculated and discussed. Quantum chemical calculations using DFT at the B3LYP/6-31G level of theory were used to calculate some electronic properties of the molecule to verify any correlation between the inhibitive effect and molecular structure of BMQ. The quantum calculations were proceeded to get data around correlati
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show MoreThe load shedding scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po
... Show More<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreSocial media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More