Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement, patients were imaged with sagittal short tau inversion recovery sequences and sagittal T2 weighted. Results: The mean age of the patients was 32.5 ± 6.7years; female to male ratio was 2.7:1. The total number of spinal cord MS lesions was 44 of them 86.4% in the cervical spine, 68.2%of the lesions had less than one vertebra extension,79.6% of the lesions did not show changes in the spinal cord morphology. There was a significant upgrading in the lesions conspicuity at short tau inversion recovery sequence comparing to T2 weighted image, P<0.001. A significant difference had been found in artifact grading between both sequences; P<0.001. Conclusions: short tau inversion recovery magnetic resonance image sequences improve detection of MS spinal cord plaques compared with T2 weighted image and itincreasesthe conspicuity of the visualized T2weighted image lesions, but also it accentuates theartifacts more than T2weighted image.
A stochastic process {Xk, k = 1, 2, ...} is a doubly geometric stochastic process if there exists the ratio (a > 0) and the positive function (h(k) > 0), so that {α 1 h-k }; k ak X k = 1, 2, ... is a generalization of a geometric stochastic process. This process is stochastically monotone and can be used to model a point process with multiple trends. In this paper, we use nonparametric methods to investigate statistical inference for doubly geometric stochastic processes. A graphical technique for determining whether a process is in agreement with a doubly geometric stochastic process is proposed. Further, we can estimate the parameters a, b, μ and σ2 of the doubly geometric stochastic process by using the least squares estimate for Xk a
... Show More