Prostate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally. Magnetic Resonance Imaging (MRI) has revolutionized the process with the advent of its multiparametric imaging (mp MRI) where the prostate is evaluated by different MRI techniques and the likelihood of the detected lesion is scored using the new prostate imaging-reporting and data system (PIRADS) scoring. Despite the improved detection of clinically significant prostate cancer by mpMRI, the ideal way to target the area of suspicion detected by mpMRI is the next level of challenge. In this review article, we will discuss the recent methods of targeting and focus on the different platforms used to integrate the mpMRI static images with the real-time US scanning in what is called (US-MRI fusion techniques).
In this work , the ligand [N-(4-Methoxybenzoyl amino)-thioxomethyl] Methionine acid has been synthesized by the reaction of 4- Methoxybenzoyl isothiocyanate with methionine acid . The metal complexes were prepared through the reaction of metals chlorides of Co(II) , Ni(II), Cu(II), Zn(II) and Cd(II) in ethanol as solvent . The ligand (MbM) and its metal complexes have been characterized by elemental analysis (CHNS), IR, 1H-13CNMR and UV- Vis spectra, magnetic susceptibility measurements, molar conductivity, melting points and atomic absorption. The metal-ligand ratio was determined by mole ratio method. The suggested structures for the Co(II), Ni(II), Cd(II) and Zn(II) complexes are tetrahedral geometry and the Cu(II) complex
... Show MoreA computational investigation is carried out in the field of charged particle optics with the aid of the numerical analysis methods. The work is concerned with the design of symmetrical double pole piece magnetic lens. The axial magnetic flux density distribution is determined by using exponential model, from which the paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested exponential model. From the knowledge of the first and second derivatives of axial potential distribution, the optical properties such as the focal length and aberration coefficients (radial distortion coefficient and spiral distortion coefficient) are determined. Finally, the pole piece profiles capable of pr
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreA series of coordination compounds of Zr(IV), Cd(II) and Sn(II) ions with 4-(((3-mercapto-5-phenyl-4H-1,2,4-triazole-4-yl)imino)methyl)-2-methoxyphenol, as a ligand has been successfully prepared in alcoholic medium. The prepared complexes were characterized quantitatively and qualitatively by using: elemental analysis CHNS, FT-IR spectroscopy, UV-visible spectroscopy, 1H and 13CNMR, atomic absorption measurements, magnetic susceptibility, thermal analysis)TG and DTG) and conductivity measurements. This ligand coordinates as a bidentate that to the metal ions through sulphur and nitrogen of (azomethine group) atoms. According to the spectral data, Cd(II)- and Sn(II)-complexes have coordination of 6 with octahedral geometry while the Zr(I
... Show MoreBackground: Laparoscopic colectomy is performed in an increasing number of institutions as a minimally invasive treatment for benign and malignant large bowel disease. Laparoscopic rectal surgery enables more accurate visualization of the anatomical structure in the pelvic cavity for selected patients with tumors in the middle and low rectum.
Objectives: To determine the early outcome of patient who underwent laparoscopic low anterior resection using radial reload stapler.
Patients and methods: This is a prospective study of 8 patients with low or mid rectal cancer who underwent a laparoscopic low anterior resection between January 2017 till June 2017 at Saint Raphael hospital.
Results: Eight patients underwent elective laparosc
A new Schiff base o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on (HL) ,have been prepared and characterization.(HL) has been used as a chelating ligand to prepare a number of metal complexes VO(II) ,Cr(III) ,Mn(II),Fe(II),Hg(II) and UO2(II) .and mixed ligands complexes have been prepared between o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on and 8- hydroxy quinoline with VO(II),Zn(II),Cd(II), Hg(II) and UO2(II) the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Chloride contents, Flame atomic absorption technique. in addition to magnetic susceptibility and conductivity measurement. Molar ratio measurement in solution gave comparabl
... Show MoreNew metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures. Keywords: pyrimidin-2-amine, acetyl isothiocyanate, complexes, Antimicrobial activity
New ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures