Prostate cancer is the commonest male cancer and the second leading cause of cancer-related death in men. Over many decades, prostate cancer detection represented a continuous challenge to urologists. Although all urologists and pathologists agree that tissue diagnosis is essential especially before commencing active surgical or radiation treatment, the best way to obtain the biopsy was always the big hurdle. The heterogenicity of the tumor pathology is very well seen in its radiological appearance. Ultrasound has been proven to be of limited sensitivity and specificity in detecting prostate cancer. However, it was the only available targeting technique for years and was used to guide biopsy needle passed transrectally or transperineally. Magnetic Resonance Imaging (MRI) has revolutionized the process with the advent of its multiparametric imaging (mp MRI) where the prostate is evaluated by different MRI techniques and the likelihood of the detected lesion is scored using the new prostate imaging-reporting and data system (PIRADS) scoring. Despite the improved detection of clinically significant prostate cancer by mpMRI, the ideal way to target the area of suspicion detected by mpMRI is the next level of challenge. In this review article, we will discuss the recent methods of targeting and focus on the different platforms used to integrate the mpMRI static images with the real-time US scanning in what is called (US-MRI fusion techniques).
Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe activity of Alanine aminopeptidase( AAP ) was measured in the urine of healthy and urinary tract cancer patients , the results showed higher activity of (AAP) in patients compared to healthy . AAP was Purified from the urine of healthy and patients with urinary tract cancer by dialysis and gel filtration (Sephadex G – 50) and two isoenzymes of (AAP) were separated from urine by using ion-exchang resin (DEAE – Sephadex A – 50 ) in previous study. The kinetics studies showed that both isoenzymes I and II obeyed Michaelis – Menton equation . with optimal concentration of alanine-4-nitroanilide as substrate for isoenzymes I and II which was (2 x 10-3 mol/L ). The two isoenzymes obeyed Arrhenius equation up two 37° C and t
... Show MoreCD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.