Electrosurgery is the application of a high radio frequency of alternating polarity, electrical current to biological tissue as a means among many functions like cut, coagulate, desiccate, or fulgurate tissue in surgical practice . Many surgeons have faced during their lifetime one or more of the complications of these devices . It is either electrical, laser, ultrasonic and mechanical.
In this work, HgBa2CaCu2-xSbxO8+δ compounds with (x = 0.2, 0.4, 0.6 and 0.8) have been prepared by the solid-state reaction method. Structural, morphological, and electrical properties were investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Using the 4-probe technique to study the effect of antimony-substitution for Copper on the electrical properties of HgBa2CaCu2-xSbxO8+δ (Hg-1212) phase was investigated by measuring the resistivity as a function of temperature. Results indicate that the addition of antimony (Sb) increases the volume fraction of the phase and changes the superconducting transition temperature Tc of the superconductor to a normal state. The dielectric loss factor and ac
... Show MoreIn this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for
... Show MoreIn this research, porous silicon (PS) prepared by anodization etching on surface of single crystalline p-type Si wafer, then Gold nanoparticle (AuNPs) prepared by pulsed laser ablation in liquid. NPs deposited on PS layer by drop casting. The morphology of PS, AuNPs and AuNPs/PS samples were examined by AFM. The crystallization of this sample was characterized by X-ray diffraction (XRD). The electrical properties and sensitivity to CO2 gas were investigated to Al/AuNPs/PS/c-Si/Al, we found that AuNPs plays crucial role to enhance this properties.
Cu X Zn1-XO films with different x content have been prepared by
pulse laser deposition technique at room temperatures (RT) and
different annealing temperatures (373 and 473) K. The effect of x
content of Cu (0, 0.2, 0.4, 0.6, 0.8) wt.% on morphology and
electrical properties of CuXZn1-XO thin films have been studied.
AFM measurements showed that the average grain size values for
CuXZn1-xO thin films at RT and different annealing temperatures
(373, 473) K decreases, while the average Roughness values increase
with increasing x content. The D.C conductivity for all films
increases as the x content increase and decreases with increasing the
annealing temperatures. Hall measurements showed that there are
two
The study aims to identify the mechanical and electrical activities of the heart according to the energy systems of advanced players and to detect the differences between the energy systems in terms of the mechanical and electrical activities of the heart for advanced players. It was clear from the results of the significance of the differences between the three groups according to the energy systems of the advanced players in all research variables that (the non-oxygenic system "Lactic"), which represents the advanced players in the arches (800 m, 1500 m) was the first in most tests of mechanical and electrical activities of the heart, which is (Margaria-Kalamen, Wingate, systolic muscle strength of the heart FC, Stroke Volume SV
... Show MoreIn this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
The study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show MorePolyaniline (PANI) has been prepared by the oxidation method in order to fabricate it with various concentrations of copper nanoparticles (CuNPs) which produced using the reduction method. Various techniques have characterized pure PANI and PANI doped CuNPs composites, such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS), which were provided important information about the structure and morphology of the fabricated polymer nanocomposites. The properties of dielectric permittivity (έ), dielectric loss (ἔ) and electrical conductivity (σ_AC) properties were studied at room temperature versus a range
... Show More