Background: Penetrating neck injuries are common problem in our country due to increasing violence, terrorist bombing and military operations.
These injuries are potentially life threating and need great attention and proper management.
Objective: The aim of this study is to focus on the importance of anatomical zonal classification of the neck in the management of penetrating injuries of the visceral compartment of the Neck.
Methods :70 patients with various injuries who were managed at causality unit and Otolaryngology department in Al-Kindy Teaching Hospital during aperiod from January 1st 2015 to October 31st 2015.
The study carried on those patient depending on proper clinical examination and their urgent management.
Results : Both civilian and military patients were admitted to the hospital, 34 patients (47.2%) in their 20s age group, while only 2 (2.8%) in 60s.
High percentage of penetrating neck injuries in zone , 48 patient (68.6%) and lowest in zone , 6 patients (8.5%).
40 patients (57.1%) presented with tracheal and laryngeal injuries and 12 patients (17.5%) were with pharyngeal injuries, 4 patients (5.7) were with recurrent laryngeal nerve injury and 13 patients (18.5%) presented with vascular injuries.
Radiological examination done for 53 patients (75%) and we found foreign bodies in 30 patients (56.6%), tracheal deviation in 4 patients (7.5%) and emphysema in 19 patients (35.8%).
Tracheostomy done in 51 patients (72.8%) neck, exploration in 20 patients (28.5%) and a 9 patients (12.8%) treated conservatively.
Conclusion: Zonal classification of penetrating neck injuries was helpful in the management. Our study explains demographics and location of the injuries. Young men involved in violence and bombing was at high risk.
Zone with involvement of trachea, larynx and pharynx were most common areas of injuries.
Recommendations
Anatomical zone classification should be used as a guideline in management of penetrating neck injuries. (Trauma lifesaving guideline).Tracheostory should be practiced by every doctor in casualty unit. Team of surgeons and anaesthiologist should be always ready for any intervention with patient present to the casualty unite with a penetrating neck injury. Emergency medicine medical practice must be presents in every casualty unit to deal with insults.
Aim of the study
1.To recognize penetrating injuries of the neck according to the anatomic neck zones.
2.Identify the outcome of their treatment
This study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green
Diabetic kidney disease (DKD) is caused by a variety of processes. As a result, one biomarker is insufficient to represent the complete process. This study Evaluate the diagnostic value of serum kidney injury molecule-1(KIM-1) and cystatin C (CysC) as early biochemical markers of DKD and predictive their sensitivities and specificities as biomarkers of nephropathy in Iraqi type 2 diabetic (T2DM) patients. This cross-sectional study include 161 T2DM patients from Diabetes and Endocrinology Center at Merjan medical city in Babylon. Patients divided according to urinary albumin creatinine ratio(ACR) (Group1:ACR≤30mg/g,Group2:ACR>30mg/g). Random spot urine and fasting blood samples were taken from each patient and urinary ACR, bloo
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreThe purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreAssessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show More