The outbreak of a current public health coronavirus 2019 disease is a causative agent of a serious acute respiratory syndrome and even death. COVID-19 has exposed to multi-suggested pharmaceutical agents to control this global disease. Baricitinib, a well-known antirheumatic agent, was one of them. This article reviews the likely pros and cons of baricitinib in attenuation of COVID-19 based on the mechanism of drug action as well as its pharmacokinetics. The inhibitory effect of baricitinib on receptor mediated endocytosis promoter, AKK1, and on JAK-STAT signaling pathway is benefacial in inhibition of both viral assembling and inflammation. Also, its pharmacokinetic has encouraged the physicians toward the drug selection for COVID-19 treatment. On the other hand, most of baricitinib side effects are dose-dependent. In conclusion, targeting of AAK1 and JAK1/2 using baricitinib has predicted to be potential and effective with minimal side effects in management COVID-19 infected patients for a short therapeutic dosing period. Laboratory monitoring should be considered for some parameters. However, experimental trials are mandatory for a long-term treatment with a lower dose of baricitinib to evaluate its effectiveness and safety in patients with moderate COVID-19 infection.
A computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
The appliance of milligauss meter was designed by Qusay Ismail to measure the induce of electromagnetic field for home appliance which are put at a distance from milligauss meter (15-30-60)cm .The results showed some appliance has recorded higher than normal acceptable level of electromagnetic radiation emissions and produced radiation of (350650)milligauss as for the rest of appliances has recorded values which are ranged between (1200)milligauss ,laptop was recorde radiation generally lower than from desktop and computer moniter (CRT).The radiation ,intensity decrease with increasing distance.
This study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
The present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreThe preferable design for unsaturated symmetrical spherical
double-pole piece electron lens required good focal properties, and in this present study investigate effect of air gap wide (S) on the properties of the projector lens specialized the minimum projector
focal length 1Fr) . and the properties of the axial magnetic field
\ lnlll
distribution:(the maximum
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such
... Show More