The outbreak of a current public health coronavirus 2019 disease is a causative agent of a serious acute respiratory syndrome and even death. COVID-19 has exposed to multi-suggested pharmaceutical agents to control this global disease. Baricitinib, a well-known antirheumatic agent, was one of them. This article reviews the likely pros and cons of baricitinib in attenuation of COVID-19 based on the mechanism of drug action as well as its pharmacokinetics. The inhibitory effect of baricitinib on receptor mediated endocytosis promoter, AKK1, and on JAK-STAT signaling pathway is benefacial in inhibition of both viral assembling and inflammation. Also, its pharmacokinetic has encouraged the physicians toward the drug selection for COVID-19 treatment. On the other hand, most of baricitinib side effects are dose-dependent. In conclusion, targeting of AAK1 and JAK1/2 using baricitinib has predicted to be potential and effective with minimal side effects in management COVID-19 infected patients for a short therapeutic dosing period. Laboratory monitoring should be considered for some parameters. However, experimental trials are mandatory for a long-term treatment with a lower dose of baricitinib to evaluate its effectiveness and safety in patients with moderate COVID-19 infection.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreIn this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which
... Show MoreThe coronavirus disease 2019 (COVID-19) pandemic and the infection escalation around the globe encourage the implementation of the global protocol for standard care patients aiming to cease the infection spread. Evaluating the potency of these therapy courses has drawn particular attention in health practice. This observational study aimed to assess the efficacy of Remdesivir and Favipiravir drugs compared to the standard care patients in COVID-19 confirmed patients. One hundred twenty-seven patients showed the disease at different stages, and one hundred and fifty patients received only standard care as a control group were included in this study. Patients under the Remdesivir therapy protocol were (62.20%); meanwhile, there (30.71
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreBackground: The COVID-19 infection is a more recent pandemic disease all over the world and studying the pulmonary findings on survivors of this disease has lately commenced.
Objective: We aimed to estimate the cumulative percentage of whole radiological resolution after 3 months from recovery and to define the residual chest CT findings and exploring the relevant affecting factors.
Subjects and Methods: Patients who had been previously diagnosed with COVID-19 pneumonia confirmed by RT-PCR test and had radiological evidence of pulmonary involvement by Chest CT during the acute illness were included in the present study. The radiol
... Show MoreAbstract
The pressures of life have become a tangible phenomenon in all societies in varying degrees. This disparity determines several factors, including the nature of societies, the level of their urbanization, the intensity of interaction, the intensity of conflict, and the increasing rate of change in those societies. many people name The modern era in which we live the “era of pressures", where one of the most important of these changes is the “new Coronavirus 19-COVID”, which has spread widely throughout the world, as the pandemic, has affected all aspects of daily life, including the educational and academic process, academic activities have been suspended in universities, which caused sudden change
... Show MoreWidespread COVID-19 infections have sparked global attempts to contain the virus and eradicate it. Most researchers utilize machine learning (ML) algorithms to predict this virus. However, researchers face challenges, such as selecting the appropriate parameters and the best algorithm to achieve an accurate prediction. Therefore, an expert data scientist is needed. To overcome the need for data scientists and because some researchers have limited professionalism in data analysis, this study concerns developing a COVID-19 detection system using automated ML (AutoML) tools to detect infected patients. A blood test dataset that has 111 variables and 5644 cases was used. The model is built with three experiments using Python's Auto-
... Show More