SnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
In this work, chemical oxidation was used to polymerize conjugated polymer "Polypyrrole" at room temperature Graphene nanoparticles were added by in situ-polymerization to get (PPY-GN) nano. Optical and Electrical properties were studied for the nanocomposites. optical properties of the nanocomposites were studied by UV-Vis spectroscopy at wavelength range (200 -800 nm). The result showed optical absorption spectra were normally determined and the result showed that the maximum absorbance wave length at 280nm and 590nm. The optical energy gap has been evaluated by direct transition and the value has decreased from (2.1 eV for pure PPy) to (1.3 eV for 5 %wt. of GN). The optical constants such as the band tail width ΔE was evaluated, the
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show MoreSoil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in ter
... Show MoreIn this study, the effect of the annealing temperature on the material properties and the structural properties of cuprous oxide was studied in order to investigate how the annealing temperature affects the material properties, and the temperature varied between 200℃, 300℃, 400℃ and 500 ℃ and was unannealed. The physical properties of the cuprous oxide were measured by X-ray diffraction (XRD). The XRD patterns showed that the Cu2O nanoparticles were highly pure, crystalline, and nano-sized. From the XRD results, we found the pure cuprite (Cu2O) phase. The values of crystal size were discovered and calculated by the Halder-Wagner and Size-Strain Plot (SSP) methods, respectively. The crystallite size increased
... Show MoreThe structural properties of the CuO nanopowder oxide prepared reflux technique
without any templates or surfactant, using copper nitrate hydrate (Cu(NO)3 3H2O) in deionized
water with aqueous ammonia solution are reported. The Xrd analysis data and processing in origin
pro program used to get FWHM and integral width to study the effect of different synthesis times
was studied on the structural properties. It was found that values of crystal sizes are 17.274nm,
17.746nm, and 18.560nm, the size of nanoparticles is determined by Halder-Wagner, and 15.796
nm, 15.851nm, and 16.52nm, were calculated by Size-Strain Plot (SSP) method. The Sample was
considered to determine physical and microstructural paramete
In this manuscript divide into two parts the first experimental and the second theoretical. The experimental part of polyvinyl chloride (PVC) can be used with aluminum (30%). Nanomaterials are synthesized by a laser pulse melting solution by ethanol. The effect of laser on the structural, morphological, optical, and electrical properties of nanoparticles (PVC) was examined by UV spectroscopy, x-ray diffraction (XRD), electron microscopy (TEM). The theoretical part of the DFT can be used to approximate the generalized gradient of the Perdew, Burke, and Ernzerhof (PBE) / 6-31G (d) groups, which were created using additional Gaussian 09 software through Gaussian 5.08. To build PVC nanocrystal pure which chemical formula [(C2H3Cl)n] and build (
... Show MoreIn this work, we are Study the effect of annealing temperature on the structure of a-Ge films doped with Sb and the electrical properties of a-Ge:Sb/c-Si heterojunction fabricated by deposition of a-Ge:Sb film on c-Si by using thermal evaporation. Electrical properties of aGe:Sb/c-Si heterojunction include I-V characteristics in dark at different annealing temperatures and C-V characteristics and with the C-V characteristics suggest that the fabricated heterojunction was abrupt type, built in potential determined by extrapolation from 1/C2-V curve and show that the built - inpotential (Vbi) for the Ge:Sb/Si system increases with the increase of annealing temperatures