In this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly dependent on the gamma dose. The optical measurement shows that all ZnO films prepared by two method have a direct energy gap, and they in general decrease with the increase of Gamma dose while the optical constant such as absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant and optical conductivity showed an opposite trend, these values increase with the increase of irradiation dose. As well as all optical properties for the samples prepared by thermal evaporation technique is higher than the samples prepared by chemical spray pyrolysis technique.
In this research we study the effect of UV radiation on pure PC samples and doped samples with plasticizer (DOP) for different exposure times (6, 12, 18, 24h). The study have been made on the change in the IR spectra causes by the UV radiation on both kinds of samples, besides the morphology changes were also studied by the optical microscope. From the results we conclude that the increasing of exposure causes the elaboration of CO2 and C2 gases.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreIn the present article, Nano crystalline SnS and SnS:3% Bi thin films were fabricated using thermal
evaporation with 400±20 nm thickness at room temperature at a rate deposition rate of 0.5 ±0.01nm
/sec then annealing for one hour at 573 K for photovoltaic application. The prepared samples were
characterized in order to investigate the structural, electrical, morphological, and optical properties
using diverse techniques. XRD and SEM were recorded to investigate the effect of doping and
annealing on structural and morphological possessions, respectively. XRD showed an SnS phase
with polycrystalline and appeared to form an orthorhombic structure, with the distinguish trend
along the (111) grade,
In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show More(Sb2S3)1-xSnx thin films with different concentrations (0, 0.05 and
0.15) and thicknesses (300,500 and 700nm) have been deposited by
single source vacuum thermal evaporation onto glass substrates at
ambient temperature to study the effect of tin content, thickness and
on its structural morphology, and electrical properties. AFM study
revealed that microstructure parameters such as crystallite size, and
roughness found to depend upon deposition conditions. The DC
conductivity of the vacuum evaporated (Sb2S3)1-x Snx thin films was
measured in the temperature range (293-473)K and was found to
increase on order of magnitude with
An experiment was conducted in the Date Palm Research Units labs / College of Agricultural Engineering Sciences / University of Baghdad to assess the tolerance toward salinity stress in potato after two mutagens treatments in vitro. Potato cv. Arizona and Rivera nodal segments were irradiated with four dosages of gamma rays at 0, 10, 20, and 30 Gray and immersed in (EMS) with four concentrations included 0, 10, 20, and 30 mM. The survival rates after mutagenesis treatments were calculated and 449 lines were obtained. The lines were tested for salinity tolerance by growing in MS medium supplemented with four concentrations of NaCl at 0, 100, 150, and 200 mM and data were analyzed according to the CRD with 10 replicates and means were
... Show MoreElectrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a
... Show MoreThis contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res
... Show More