In this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly dependent on the gamma dose. The optical measurement shows that all ZnO films prepared by two method have a direct energy gap, and they in general decrease with the increase of Gamma dose while the optical constant such as absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant and optical conductivity showed an opposite trend, these values increase with the increase of irradiation dose. As well as all optical properties for the samples prepared by thermal evaporation technique is higher than the samples prepared by chemical spray pyrolysis technique.
This work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
The largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreThis study deals with the measurement of the specific activity radiation for beryllium -7 isotope in Baghdad city for samples of surface soils, by using gamma ray spectrometer technique. Twenty one samples were collected from surface soil of Baghdad city from Risafa and Karkh sides, (7) samples from Risafa side and(14) samples from Karkh side, where the axis for locations which are fixed by using (G.P.S.) . Gamma-ray spectrometry system (DSA 2000) with high purity germanium detector was used, which has (50%) efficiency and resolution of (2.2 keV) at gamma line (1332 keV) of 60Co source. The specific activity values for beryllium -7 isotope in surface soil of R
... Show MoreZinc-indium-selenide ZnIn2Se4 (ZIS) ternary chalcopyrite thin film on glass with a 500 nm thickness was fabricated by using the thermal evaporation system with a pressure of approximately 2.5×10−5 mbar and a deposition rate of 12 Å/s. The effect of aluminum (Al) doping with 0.02 and 0.04 ratios on the structural and optical properties of film was examined. The utilization of X-ray diffraction (XRD) was employed to showcase the influence of aluminum doping on structural properties. XRD shows that thin ZIS-pure, Al-doped films at RT are polycrystalline with tetragonal structure and preferred (112) orientation. Where the
Nano crystalline copper sulphide (Cu2S) thin films pure and 3% Bi doped were deposited on glass substrate by thermal evaporation technique of thickness 400±20 nm under a vacuum of ~ 2 × 10− 5 mbar to study the influence of annealing temperatures ( as-deposited, and 573) K on structural, surface morphology and optical properties of (Cu2S and Cu2S:3%Bi). (XRD) X-ray diffraction analysis showed (Cu2S and Cu2S:3%Bi) films before and after annealing are polycrystalline and hexagonal structure. AFM measurement approves that (Cu2S and Cu2S:3%Bi) films were Nano crystalline with grain size of (105.05-158.12) nm. The optical properties exhibits good optical absorption for Cu2S:3%Bi films. Decreased of optical band gap from 2.25 to 2 eV after dop
... Show MoreIn this work Nano crystalline (Cu2S) thin films pure and doped 3% Al with a thickness of 400±20 nm was precipitated by thermic steaming technicality on glass substrate beneath a vacuum of ~ 2 × 10− 6 mbar at R.T to survey the influence of doping and annealing after doping at 573 K for one hour on its structural, electrical and visual properties. Structural properties of these movies are attainment using X-ray variation (XRD) which showed Cu2S phase with polycrystalline in nature and forming hexagonal temple ,with the distinguish trend along the (220) grade, varying crystallites size from (42.1-62.06) nm after doping and annealing. AFM investigations of these films show that increase average grain size from 105.05 nm to 146.54 nm
... Show MoreIn this work, the mass attenuation coefficient, effective atomic number and half value layer parameters were calculated for silicate (SiO2) mixed with various levels of lead oxide and iron oxide as reinforced materials. SiO2 was used with different concentrations of PbO and Fe2O3 (25, 50 and 75 weight %). The glass system was prepared by the melt-quenching method. The attenuation parameters were calculated at photon energies varying from 1keV to 100MeV using the XCOM program (version 3.1). In addition, the mass attenuation coefficient and half value layer parameters for selected glass samples were experimentally determined at photon energies 0.662 and 1.28 MeV emitted from radioactive sources 137Cs and 22Na respe
... Show More