In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented
Business organizations have faced many challenges in recent times, most important of which is information technology, because it is widely spread and easy to use. Its use has led to an increase in the amount of data that business organizations deal with an unprecedented manner. The amount of data available through the internet is a problem that many parties seek to find solutions for. Why is it available there in this huge amount randomly? Many expectations have revealed that in 2017, there will be devices connected to the internet estimated at three times the population of the Earth, and in 2015 more than one and a half billion gigabytes of data was transferred every minute globally. Thus, the so-called data mining emerged as a
... Show MoreDue to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreIn this paper we give definitions, properties and examples of the notion of type Ntopological space. Throughout this paper N is a finite positive number, N 2. The task of this paper is to study and investigate some properties of such spaces with the existence of a relation between this space and artificial Neural Networks (ïNN'S), that is we applied the definition of this space in computer field and specially in parallel processing
Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreThe administration on the basis of the activities designed to evaluate the performance of activities in terms of cost, time and quality by identifying activities that add value and those that are no add value and enables the administration of making up their own continuous improvement in production, through lower costs and reduce the time and improve the quality and reduce the incidence of spoilage and waste, y based search Ally premise that (the continuous improvement of the adoption of management style on the basis of the activities helps management in decision-making wise to reduce costs) to prove the hypothesis has sought research to achieve its goal of Alkadivh and Alkoppelan &nb
... Show MoreIn this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T