The Dopping effect by methyl orange ( )on optical constants [Refractive index (n), extinction coefficient(K0),real and imaginary parts of dielectric constant(εr &εi)] of poly methyl methacrylat (PMMA) that additive to this polymer with both percentages 2% and 4% at thickness(145)µm have been studied. This study has been done by recording the absorption and transmission spectra in the wavelength range (200-900)nm . The results showed that all optical parameters are increased by increasing dopping rate except the transmission was decreased.
In this work, thin films of undoped and Al-doped CdO with (0.5, 1 and 2) wt.% were prepared by using thermal vacuum evaporation on glass substrate at room temperature. The optical absorption coefficient (α) of the films was determined from transmittance spectra in the range of wavelength (400-1100) nm. The spectral transmission and the optical energy band gap decrease from 75% and 2.24 eV to 20% and 2.1 eV respectively depending upon the Al content in the films, also our studies include the calculation of the optical constants (refractive index, extinction coefficient, real and imaginary part of dielectric constant) as a function of photon energy. It is evaluated that the optical band gap of
... Show MoreNanocomposites of polymer material based on CdS as filler
material and poly methyl methacrylate (PMMA) as host matrix have
been fabricated by chemical spray pyrolysis method on glass
substrate. CdS particles synthesized by co-precipitation route using
cadimium chloride and thioacetamide as starting materials and
ammonium hydroxide as precipitating agent. The structure is
examined by X-ray diffraction (XRD), the resultant film has
amorphous structure. The optical energy gap is found to be (4.5,
4.06) eV before and after CdS addition, respectively. Electrical
activation energy for CdS/PMMA has two regions with values of
0.079 and 0.433 eV.
Comparison for the optical energy gap between pure
PMMA , PMMA-TiO2 micro composites and PMMA-TiO2 nano
composites have been investigated under uv – radiation , the
effect of time irradiation (0,6,12,24,48,72,96 and 120) have been
studied for these specimens to study the photic stability .The
results show that the photostability of the PMMA-TiO2
nanocomposite is higher than that of the pure PMMA and
PMMA-TiO2 micro composite under UV-light irradiation
This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreAt a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100
... Show MoreIn this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreGamma - irradiation effect on polymethylmethacrylate (PMMA) samples has been studied using Positron Annihilation Lifetime (PAL) method. The orthopositronium (o-Ps) lifetime τ3, hence the o-ps parameters, the volume hole size (Vh) and the free volume fraction (Ꞙh) in the irradiated samples were measured as a function of gamma-irradiation dose up to 28.05 kGy. It has been shown that τ 3, Vh, and Ꞙh, are increasing in general with increasing gamma-dose, to reach a maximum percentage increment of 22.42% in τ3, 60% in Vh and 29.5% in Ꞙh, at. 2.55 kGy, whereas τ2 reaches maximum increment of 119. 7% at 7.65 kGy. The results s
... Show MoreAn environmentally begnin second derivative spectrometric approach was developed for the estimation of the dissociation constants pKa(s) of metformin, a common anti-diabetic drug. The ultraviolet spectra of the aqueous solution of metformin were measured at different acidities, then the second derivative of each spectrum was graphed. The overlaid second derivative graphs exhibited two isobestic points at 225.5 nm and 244 nm pointing out to the presence of two dissociation constants for metformin pKa1 and pKa2, respectively. The method was validated by evaluating the reproducibility of the acquired results by comparing the estimated values of the dissociation constants of two different strategies that show excellent matching. As we
... Show More