The ion-pair formation method has been applied for the spectrophotometric determination of Cimetidine and Erythromycin ethylsuccinate, in bulk samples and in dosage form. The methods are accurate, simple, rapid, inexpensive and sensitive depending on the extraction of the formed ion-pair with brompthymol blue (BTB) as a chromogenic reagent in chloroform, use phthalate buffer of pH 5.5 and 4.0 for Cimetidine and Erythromycin ethylsuccinate respectively. The formed complexes show absorbance maxima at 427.5 nm and 414.5 nm for Cimetidine and Erythromycin ethylsuccinate respectively against reagent blank. The calibration graphs are linear in the ranges of 0.5-15 µg.mL-1 with detection limit of 0.222 µg.mL-1 for Cimetidine and 0.5-50 µg.mL-1 with detection limit of 0.286 µg.mL-1 for Erythromycin ethylsuccinate. The results show the absence of interferences from the excipients on the determination of these drugs. The proposed methods have been successfully applied for the determination of Cimetidine and Erythromycin ethylsuccinate (with two of its derivatives) in pharmaceutical preparations.
The effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More