In this research, new Schiff base is derived from chitosan O-nitrobenzyldehyde and its complexes were synthesized. All compounds were characterized by FT-IR, UV-Visible, TGA, DTA, TG and molar conductivity with melting point. The results showed that Schiff base was coordinated via nitrogen atom azomethine with the center metal ions Co+2,Ni+2 and Cu+2 behaving monodentate ligand and forming complexes with molecular formula [M(L)Cl2H2O] The tetrahedral geometrical was suggested for all prepared complexes based on the characterization data for all techniques. +2,Cu+2, Ni+2M = Co
Chloroacetamide derivatives (2a-g) have been prepared through reaction of chloroacetyl chloride(1) (which prepared by the reaction of chloroacetic acid with thionyl chloride) with primary aromatic amines and sulfa compounds to afford compounds (2a-g) which then reacted with p-hydroxy benzaldehyde via Williamson reaction to obtaine the new compounds 2-(4-formyl phenoxy)-N-aryl acetamide (3a-g). Finally , compounds (3a-g) will be use as a good synthon to prepare the Schiff bases represented by compounds 2-(4-aryliminophenoxy)-N-arylacetamide (4a-g). through , reaction with some primary aromatic amine. All the prepared compounds were investigated by the available physical and spectroscopic methods.
A novel series of chitosan derivatives were synthesized via reaction of chitosan with carbonyl compounds and grafted it’s by with different amine compounds substituted hydrogen. The produced polymers were characterized by different analyses FTIR, 1HCNMR, XRD, DSC and TGA. Solubility in water as well as many solvent was investigated, antibacterial activity of chitosan and its derivatives against two types of bacteria E. coli and S. aureus was also investigated. The results showed that derivatives sort of have antibacterial activities against Esherichia coli (Gram negative) better than chitosan whilst compound IX has better antibacterial against Staphylococcus aureus (Gram positive). SEM analysis showed that increase of surface roughness wi
... Show MoreA novel series of chitosan derivatives were synthesized via reaction of chitosan with carbonyl compounds and grafted it’s by with different amine compounds substituted hydrogen. The produced polymers were characterized by different analyses FTIR, 1HCNMR, XRD, DSC and TGA. Solubility in water as well as many solvent was investigated, antibacterial activity of chitosan and its derivatives against two types of bacteria E. coli and S. aureus was also investigated. The results showed that derivatives sort of have antibacterial activities against Esherichia coli (Gram negative) better than chitosan whilst compound IX has better antibacterial against Staphylococcus aureus (Gram positive). SEM analysis showed that increase of surface roughness wi
... Show MoreThe preparation of some new coordination compounds for nikel (II), manganese (II), copper (II), cobalt (II)and mercury (II), with ligand obtained from Benzoinand2-amino pyridine.The ligand[6-(2-hydroxy-1,2-diphenylethylideneamino)pyridin-3-ylium)](L) was made from reactin ethanol with metal salts in (1:1)(metal : ligand)ratio.[MLCl] was the inclusive formula of the complexes where M= Mn(II),Co(II),Ni(II),Cu(II) and Hg(II). Metal analysis by electronic spectra, atomic absorption ,infrared spectra, 1H&13C-NMR(only ligand)spectral studies, magnetic moment and molar conductance measurements used to describe the compounds.The determinations indicated that the ligand coordinates with the metal (II) ion in neutral tridentate manner th
... Show MoreA Schiff base ligand 1,2-[Bis-(1-phenyl-2-hydroxy-2-phenyl)-amino] benzene [H2L] and its complexes with (Cu(II), Zn(II), Cd(II) and Hg(II)) ions are reported. The ligand was prepared by condensation reaction of ortho-phenylenediamine in methanol under reflux with benzoin to give the mentioned ligand. Then the complexes were synthesized by adding corresponding metal salts to the solution of the ligand in methanol under reflux with 1:1 metal to ligand ratio. On the basis of molar conductance I.R., U.V-Vis, HPLC, chloride content and atomic absorption the complexes may be formulated as K2[M(L)Cl2][MII = Cu, Zn, Cd and Hg]. The data of these measurements suggest a tetrahedral geometry to complexes Cu, Zn, Cd and Hg.
2,2'-(1-(3,4-bis(carboxydichloromethoxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl)bis(oxy)bis(2,2-dichloroacetic acid) a derivative of L-ascorbic acid was prepared by reaction of L-ascorbic acid with trichloroacetic acid (1:4) ratio, in the presence of potassium hydroxide. A series of new metal complexes of this ligand were prepared by a reaction with the chlorides of Cd(II), Co(II), Ni(II), Cu(II) and Zn(II). The new ligand and its complexes were identified by C.H.N., IR, UV-visible spectra, Thermogravimetric analysis (TGA), as well as 1H, 13C-NMR and Mass spectra for ligand L. The complexes were also identified by molar conductance, atomic absorption, magnetic susceptibility and X-ray diffraction for Cu (II) complex. FT-IR spectra
... Show Moreالصيغة العامة للمعقدات الجديدة [M2(BDS)Cl4] الناتجة من تفاعل الليكاند الجديد] ن1,ن4-ثنائي(1أ –بنزو]د[ اميدازول-2-يل)-ن1,ن4-ثنائي(4-ثنائي مثيل امينو) بنزيل) سكسنمايد[ (BDS) مع الايونات الفلزية الكادميوم, الكوبلت, الزئبق, النحاس والنيكل. تم اشتقاق هذا الليكاند من تفاعل المواد الثلاث 4-(ثنائي ميثيل أمينو) بنزالدهيد، 2-أمينو بنزيميدازول، وكلوريد السكسينيل. تم تشخيص المركبات باستخدام مطيافية طيف الاشعة تحت الحمراء وطيف الرن
... Show MoreA new Schiff base, 2-N( 4- N,N – dimethyl benzyliden )5 – (p- methoxy phenyl) – 1,3,4- thiodiazol ,and their metal complexes Cu (Π) ,Ni (Π), Fe (III) , Pd (Π) , Pt (IV) , Zn(Π) ,V(IV) and Co (Π) , were synthesized. The prepared complexes were identified and their structural geometries were suggested by using flam atomic absorption technique , FT-IR and Uv-Vis spectroscopy, in addition to magnetic susceptibility and conductivity measurements. The study of the nature of the complexes formed in ethanol solution , following the mole ratio method , gave results which were compared successfully with those obtained from the isolated solid state studied. Structur
... Show More