The main aim of this paper is to introduce the concept of a Fuzzy Internal Direct Product of fuzzy subgroups of group . We study some properties and prove some theorems about this concept ,which is very important and interesting of fuzzy groups and very useful in applications of fuzzy mathematics in general and especially in fuzzy groups.
The purpose of this research is to show a constructive method
for using known fuzzy groups as building blocks to form more fuzzy
subgroups. As we shall describe employing this procedure with the
fuzzy generating subgroups give us a large class of fuzzy
subgroup of abelian groups which include all fuzzy subgroup of
abelian groups of finite order.
we applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with investigation some theorems, and also, we study the notation of direct product of intuitionistic fuzzy topological d-algebra.
In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
In this paper, we generalize the definition of fuzzy inner product space that is introduced by Lorena Popa and Lavinia Sida on a complex linear space. Certain properties of the generalized fuzzy inner product function are shown. Furthermore, we prove that this fuzzy inner product produces a Nadaban-Dzitac fuzzy norm. Finally, the concept of orthogonality is given and some of its properties are proven.
Our goal in the present paper is to introduce a new type of fuzzy inner product space. After that, to illustrate this notion, some examples are introduced. Then we prove that that every fuzzy inner product space is a fuzzy normed space. We also prove that the cross product of two fuzzy inner spaces is again a fuzzy inner product space. Next, we prove that the fuzzy inner product is a non decreasing function. Finally, if U is a fuzzy complete fuzzy inner product space and D is a fuzzy closed subspace of U, then we prove that U can be written as a direct sum of D and the fuzzy orthogonal complement of D.
In this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Abstract
All the economic units whether productive or service units , strive to achieve specific objectives , their presence and continuity depend on them and the quality of the performance and service present to the society . This units to be able to achieve their objectives , must own basic assets to perform the activities , and apply laws , systems , and instructions , in addition to legal , managerial , and financial authorities . So this units to endeavor maintain this assets , in addition to sound application of laws ,systems . and procedures to enhance their performance . For this purpose arise the role of internal control and internal check in maintenance of assets and sound application of&n
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreThe purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.