A Bayesian formulation of the ridge regression problem is considerd, which derives from a direct specification of prior informations about parameters of general linear regression model when data suffer from a high degree of multicollinearity.A new approach for deriving the conventional estimator for the ridge parameter proposed by Hoerl and Kennard (1970) as well as Bayesian estimator are presented. A numerical example is studied in order to compare the performance of these estimators.
The Dagum Regression Model, introduced to address limitations in traditional econometric models, provides enhanced flexibility for analyzing data characterized by heavy tails and asymmetry, which is common in income and wealth distributions. This paper develops and applies the Dagum model, demonstrating its advantages over other distributions such as the Log-Normal and Gamma distributions. The model's parameters are estimated using Maximum Likelihood Estimation (MLE) and the Method of Moments (MoM). A simulation study evaluates both methods' performance across various sample sizes, showing that MoM tends to offer more robust and precise estimates, particularly in small samples. These findings provide valuable insights into the ana
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreThe Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati
... Show MoreOne of the critical factors for dental implant success is accurate clinical and radiological assessment. Cone-beam computed tomography systems (CBCT) allow surgeons to determine the quality and quantity before surgery, aiding in treatment planning. This study highlights the importance of such an assessment Materials and Methods A total of 40 patients were referred to CBCT scanning for pre-dental implant assessment in the Oral and Maxillofacial Radiology department at Al-Shaheed Gazi Al Hariri Hospital from 2021 to 2022. The patients were between 18 and 50 years old. All data were analyzed with on-demand 3D software (Kavo OP 3D: Cone Beam 3D imaging Germany). Results: Regarding the ridge shape: In the upper anterior and posterior regions, th
... Show MoreThe accurate extracting, studying, and analyzing of drainage basin morphometric aspects is important for the accurate determination of environmental factors that formed them, such as climate, tectonic activity, region lithology, and land covering vegetation.
This work was divided into three stages; the 1st stage was delineation of the Al-Abiadh basin borders using a new approach that depends on three-dimensional modeling of the studied region and a drainage network pattern extraction using (Shuttle Radar Topographic Mission) data, the 2nd was the classification of the Al-Abiadh basin streams according to their shape and widenings, and the 3rd was ex
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreThe aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show More