This paper studies the existence of positive solutions for the following boundary value problem :-
y(b) 0 α y(a) - β y(a) 0 bta f(y) g(t) λy    ï‚¢ï€
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines ( ï¬ ) Eigenvalue which would be needed to find the positive solution .
This paper devoted to the analysis of regular singular initial value problems for ordinary differential equations with a singularity of the first kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation, two examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
The aim of this book is to present a method for solving high order ordinary differential equations with two point boundary condition of the different kind, we propose semi-analytic technique using two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, we discussion the existence and uniqueness of solutions and many examples are presented to demonstrate the applicability, accuracy and efficiency of the methods by compared with conventional method .i.e. VIDM , Septic B-Spline , , NIM , HPM, Haar wavelets on one hand and to confirm the order convergence on the other
... Show MoreThe Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi
... Show MoreThis paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
This paper aims to study the quaternary classical continuous optimal control problem consisting of the quaternary nonlinear parabolic boundary value problem, the cost function, and the equality and inequality constraints on the state and the control. Under appropriate hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary value problem has a quaternary classical continuous optimal control vector that satisfies the equality constraint and inequality state and control constraint. Moreover, mathematical formulation of the quaternary adjoint equations related to the quaternary state equations is discovered, and then the weak form of the quaternary adjoint
... Show MoreIn this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
Number theorists believe that primes play a central role in Number theory and that solving problems related to primes could lead to the resolution of many other unsolved conjectures, including the prime k-tuples conjecture. This paper aims to demonstrate the existence of this conjecture for admissible k-tuples in a positive proportion. The authors achieved this by refining the methods of “Goldston, Pintz and Yildirim” and “James Maynard” for studying bounded gaps between primes and prime k-tuples. These refinements enabled to overcome the previous limitations and restrictions and to show that for a positive proportion of admissible k-tuples, there is the existence of the prime k-tuples conjecture holding for each “k”. The sig
... Show More