The aim of this work is the synthesis of new derivatives of barbiturate of D-erythroascorbic acid. To obtain these derivatives, the 5,6-O-isopropylidene-L-ascorbic acid (4) was chosen, which was prepared from the reaction of L-ascorbic acid (3) as a starting material with dry acetone in the presence of hydrogen chloride. The esterification of hydroxyl groups at C-2 and C-3 positions with excess of benzoyl chloride in dry pyridine was obtained compound (5). Hydrolysis for compound (5) in acetic acid (65%) gave the compound (6). Oxidation of the product (6) with sodium periodate results an Aldehyde (7), which was reacted with dimethyl malonate in the presence of potassium hydroxide to give the malonate (8). The cyclocondensation reaction for compound (8) with urea, thiourea and guanidine hydrochloride gave the following compounds (9), (10) and (11) respectively. All these compounds were characterised by Thin Layer Chromatography (TLC) and FTIR spectra and some were characterised by (U.V-Vis) spectra, 1HNMR spectra and 13CNMR spectra.
Ni and Cd complexes of new Schiff base derived from 5-Amino-2-phenyl-2,4-dihydro-pyrazol-3-one with 4-chlorobenzalaldehyde (A) , 2-Hydroxy-benzalaldehyde (B) and 4-Hydroxy-benzaldehyde (C) have been prepared and characterized by elemental analysis , molar conductivity measurements , FTIR , UV- vis , 1HNMR, mass spectrometer and magnetic susceptibility. Analytical data revealed that six complexes were a distorted tetrahedral geometry and exhibited (1:1) metal :ligand ratio. The biological activity for the three ligands and its complexes were studied
This work includes the synthesis of new ester compounds containing two 1,3,4-oxadiazole rings, 15a-c and 16a-c. This was done over seven steps, starting with p-acetamido-phenol 1 and 2-mercaptobenzoimidazole 2. The structure of the products was determined using FT-IR, 1H NMR, and mass spectroscopy. The evaluation of the antimicrobial activities of some prepared compounds was achieved against four types of bacteria (two types of gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis, and two types of gram-negative bacteria, Pseudomonas aeruginosa and E. Coli), as well as against one types of fungus (C. albino). The results show moderate activit against the study bacteria, and the theoretical analysis of the toxi
... Show MoreThe aim of this work is the synthesis of new grafted PVA polymer with a derivative of Erythro-ascorbic acid (pentulosono-ɣ -lactone-2, 3-enedianisoate). All synthesized compounds were characterized by thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. They were also evaluated for antimicrobial properties by dilute method against four pathogenic bacteria (Escherichia coli ,Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed good activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer. The order of increa
... Show MoreA new ligand 2,3-dihydrobenzo [d] thiazole-2-carboxylic acid (L) has been prepared from the reaction of ortho amino phenyl thiol with dichloroacetic acid in mole ratio (1:1). It has been characterized by elemental analysis (C.H.N.), IR, UV- Vis.spectraand 1H, 13C-NMR. A new series complexes of the bivalent ions (Co, Ni, Cu, Pd, Cd, Hg and Pb) and the trivalent (Cr) have been prepared and characterized too. The structural has been established by elemental analysis (C.H.N.), IR, UV-Vis. spectra, molar conductivity, atomic absorption and magnetic susceptibility measurements. The synthesized complexes were prepared in (1:2) ratio correspond to (Co(II), Ni(II), Cu(II), Pd(II), Cd(II), Hg(II) and Pb(II) complexes while in case Cr(III) complex is
... Show MoreIn the present work, the phthalic acid (phthH2) and 1.10 phenonthroline (phen), and their complexes were synthesized and isolated as [M(phth)(phen)2], Mn(II), Fe(II), Co(II), Ni(II) Cu(II), Zn(II), and Cd(II) ions. These complexes were characterized by elemental analysis, melting point, conductivity, percentage metal, UV–Vis, FT-IR, and magnetic moment measurements. The molar conductance indicates that all the metal complexes in DMSO are nonelectrolytic. phthalic acid (phtha), and 1,10-Phenanthroline (phen), behaved as bidentate, coordinating to the metal ion through their two oxygen and two pyridinyl nitrogen atoms respectively, as corroborated by. Electronic spectra, FTIR, spectroscopy amusement indicated that all the metal complexes ad
... Show MoreCoupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show MoreThe target of this study was to synthesize several new Ciprofloxacin drug analogs by providing a nucleophilic substitution procedure that provides new functionality at the carboxylic group location. The analogs were synthesized, designed, and characterized by 1HNMR, and FTIR. The synthetic path began from the reaction of ciprofloxacin drug with morpholine to give compound[B], ciprofloxacin derivative was linked with a variety of primary and secondary amines to give compounds[B1-B9]. The above-mentioned prepared compounds [B3 and B5] were applied to liver enzymes, and the increase in the activity of these enzymes was observed. In addition, a theoretical study was conducted to study the energies and properties of the prepared co
... Show More