The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
This research involves an indirect Fluorophotometric method for the determination of microgram amount of oxymetazoline hydrochloride in the concentration range 0.1-5.0 g/ml. The method is based on the oxidation of the drug by cerium sulphate solution which is acidic medium where Ce IV is reduced to Ce III which can be excited at 259 nm to give an emitted light at 377 nm which is directly proportional to the concentration of Ce III which is equivalent to Ce IV that is needed to oxidize the studied drug. The average recovery of the method is 100.19% and relative standard deviation (RSD) < 0.37% . The method have been successfully applied to the determination of the studied drug in its pure and pharmaceutical preparations and it wa
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
The -multiple mixing ratios of γ-transitions from levels of populated in the are calculated in the present work by using the a2-ratio methods. We used the experimental coefficient (a2) for two γ -transitions from the same initial state, the statistical tensor, which is related to the a2-coefficient would be the same for the two transitions. This method was used in a previous work for pure transitions or which can be considered pure. In these cases the multiple mixing ratios for the second transition ( ) equal zero, but in our work we applied this method for mixed γ-transitions and then the multiple mixing ratio ( ) is known for one transition. Then we calculate the ( ) value and versareversa. The we
... Show MoreVolterra – Fredholm integral equations (VFIEs) have a massive interest from researchers recently. The current study suggests a collocation method for the mixed Volterra - Fredholm integral equations (MVFIEs)."A point interpolation collocation method is considered by combining the radial and polynomial basis functions using collocation points". The main purpose of the radial and polynomial basis functions is to overcome the singularity that could associate with the collocation methods. The obtained interpolation function passes through all Scattered Point in a domain and therefore, the Delta function property is the shape of the functions. The exact solution of selective solutions was compared with the results obtained
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
Estimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.