Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
In some cases, researchers need to know the causal effect of the treatment in order to know the extent of the effect of the treatment on the sample in order to continue to give the treatment or stop the treatment because it is of no use. The local weighted least squares method was used to estimate the parameters of the fuzzy regression discontinuous model, and the local polynomial method was used to estimate the bandwidth. Data were generated with sample sizes (75,100,125,150 ) in repetition 1000. An experiment was conducted at the Innovation Institute for remedial lessons in 2021 for 72 students participating in the institute and data collection. Those who used the treatment had an increase in their score after
... Show MoreLet Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.
In this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreSliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
The main objective of this research is to study and to introduce a concept of strong fully stable Banach -algebra modules related to an ideal.. Some properties and characterizations of full stability are studied.
Tests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreThe idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show More