A computational investigation is carried out in the field of charged particle optics with the aid of the numerical analysis methods. The work is concerned with the design of symmetrical double pole piece magnetic lens. The axial magnetic flux density distribution is determined by using exponential model, from which the paraxial-ray equation is solved to obtain the trajectory of particles that satisfy the suggested exponential model. From the knowledge of the first and second derivatives of axial potential distribution, the optical properties such as the focal length and aberration coefficients (radial distortion coefficient and spiral distortion coefficient) are determined. Finally, the pole piece profiles capable of producing the assign were determined.
The integer simulation and development finite impulse response (FIR) filters taking into account the possibilities of their realization on digital integer platforms are considered. The problem statement and solution of multifunctional synthesis of digital FIR filters such a problem on the basis of the numerical methods of integer nonlinear mathematical programming are given. As an several examples, the problem solution of synthesis FIR-filters with short coefficient word length has been given. The analysis of their characteristics is resulted. The paper discusses issues of modeling and synthesis of digital FIR filters with provision for the possibilities of their implementation on digital platforms with integer computation arithme
... Show MoreExperimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of
The problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field. The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); th
... Show MoreIn this work an experimental study of deposited silver nanoparticles on the core of optical fiber end at different time based on photodeposition technique is presented. The results demonstrated that the concentration of silver nanoparticles deposited on the core of optical fiber end was effected by the deposition time. The photodeposition system was fabricated using multi-mode optical fiber and laser diode source. The results show that the silver deposition concentration increases linearly with the deposition time. The deposition rate was 3.25 (wt/ s)
The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.
PbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.
An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards
... Show MoreHuman cerebral cortex is the outer folded neuronal layer and represents major part of the cerebrum with enormous functions. It is a laminar structure, easily visualized grossly. Previous studies showed that the Superior Temporal gyrus is one of the thickest cerebral cortex regions, reaching (about 4 mm). The Electron microscope study was made on 6 samples taken to measure the neuronal soma dimension of the large pyramidal cells present in the internal pyramidal cortical layer V in different age groups and gender. Aging process was obvious on the large pyramidal cells of the cerebral cortex, in which their neuronal soma dimensions showed shrinkage with age progression. But statistically there was no differences in the values between males an
... Show MoreFirst principle calculations are performed to theoretically predict the physical properties of hexagonal aluminium arsenide planar and buckled monolayers. The structural characteristics showed that the buckled parameter is about 0.32 A°. Cohesive energies have favourable values and it indicates the fabrication possibility. Phonon dispersion properties indicated that the planar aluminium arsenic monolayers are dynamically unstable, while the buckled is less dynamically unstable. The elastic constant parameters achieved the required characteristics of stable hexagonal monolayer structures. The study of electronic band structure prefers to indirect semiconductor band gaps, and the density of states showed strong orbital hybridizati
... Show MoreBackground: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show More