The new C-5 schiff bases derived from D-erythroascorbic acid contaning pyrimidine unit were synthesized by condensation of D-erythroascorbic acid with aromatic amine (containing pyrimidine unit)in dry benzene using glacial acetic acid as a catalyst. D-erythroascorbic acid was synthesized by four steps(Schem 1), while the aromatic amine which is containing oxopyrimidine or thiopyrimidine synthesized by the reaction of chalcone urea or thiourea in acid or basic medium, respectively . The structure of synthesized compounds have been characterized by their melting points , FTIR , UV-Vis and 1HNMR spectroscopy . All the synthesized compounds have been screened for their antibacterial activities. They exhibited good antibacterial activity against Escherichia coli (G-) and Staphylococus aureus (G+) , while the compounds [V]b , [VI]b and [VII]b did not show any biological activity against this type of bacteria.
4-amino-3-(4-(((4-hydroxy-3,5dimethoxybenzyl)oxy)methyl)phenyl)-1,2,4-triazole-5-thione was synthesized by to method the first one from melt reaction of 4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid with Thiocarbonyldihydrazide, the second method from convert the corresponded acid hydrazide to potassium 2-(4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoyl)hydrazinecarbodithioate salt then react with hydrazine hydrate. Newly Schiff base (7a-7f) were synthesized from reaction the 4-amino-1,2,4-triazol with substituted hydroxybenzaldehyde. The resulting compounds were characterized by IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to scree
... Show MoreNewly series of 6,6’-((2-(Aryl)dihydropyrimidine-1,3(2H,4H)-diyl)bis(methylene))bis(2-methoxy phenol) (3a-i) were synthesized from cyclization of 6,6’-((propane-1,3-diylbis (azanediyl)) bis(methylene)) bis(2-methoxyphenol) with several aryl aldehyde in the presence of acetic acid. The newly compounds characterized from their IR, NMR and EIMs spectra. The antioxidant capacity of these compounds screened by utilizing DPPH and FRAP assays. Compounds 3g and 3i exhibited significant antioxidant capability in both assays. Docking study for these compounds as a potential inhibitors of gyrase enzyme were carried out. Compound 3g exhibited significant inhibition with binding free energies (DG) higher than novobiocin. compounds 2, 3a, 3b, 3
... Show MoreBacterial infections pose an ongoing challenge due to resistance developed by infectious bacteria. So much research targeting designing new antibacterials is published annually. Our goal is to synthesize compounds that have given antibacterial activity according to molecular docking against the chosen target protein and that have acceptable ADMET properties that can be synthesized and used in the future. New 2-(5-methoxy-1-(4-chlorobenzene)-2-methyl-1H-indol-3-yl)acetohydrazide derivatives’ antibacterial efficacy against two common strains of Gram-negative and Gram-positive microorganisms has been developed, produced, and investigated. Sophisticated, modern analytical methods, including ATR-FTIR and 1H NMR spectroscopy, were used
... Show MoreAbstract As a part of our ongoing project on the design and synthesis of new 4-thiazolidinone derivatives with antimicrobial activity, four new 4-thiazolidinone derivatives carrying bromo, nitro, methyl, and chloro groups on the benzene ring were synthesized by starting with the 7-amino-4-methylcoumarin moiety, linking coumarin with various phenyl isothiocynate to form the thiourea group, and then cyclizing the derivatives, characterized by IR and 1HNMR, and assayed in vitro for their antimicrobial activity against Gram positive and Gram negative bacteria and fungi. Overall, 2-(4-methyl-2-oxo-2H-chromen-3-yl)-3-(4-nitrophenyl) thiazolidin-4-one to be the most powerful individuals in the series. Based on the observed data, it can be sta
... Show MoreThis work focuses on the use of biologically produced activated carbon for improving the physi-co-chemical properties of water samples obtained from the Tigris River. An eco-friendly and low-cost activated carbon was prepared from the Alhagi plant using potassium hydroxide (KOH) as an impregnation agent. The prepared activated carbon was characterised using Fourier-transform infrared spectroscopy to determine the functional groups that exist on the raw material (Alhagi plant) and Alhagi activated carbon (AAC). Scanning electron microscope–energy-dispersive X-ray spectroscope was also used to investigate the surface shape and the elements that compose the powder. Brunauer–Emmett–Teller surface area analysis was used to evaluate the spe
... Show MoreA series of coumarin derivatives linked to amino acid ester side chains were synthesized and evaluated of their antibacterial and antifungal activity. The coumarin derivatives was alkylated by the ethyl bromoacetate and then using potassium carbonate to get alkylated hymecromone. Conventional solution method for amide bond formation was used as a coupling method between the carboxy-protected amino acids with acetic acid side chain of coumarin derivatives. The DCC/ HOBt coupling reagents were used for peptide bond formation. The proposed analogues were successfully synthesized and their structural formulas were consistent with the proposed struct
... Show MoreA new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1 HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral geometry for ZnII, C
... Show MoreA new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral g
... Show MoreIn :the _pr sent _paper we report ths. ynthesis ·of a new li:ga!!d..
[f4LJ [{'2 {1-'[(2-hyd•:0xy-.ben:zy1i.den·e)..,bxcJrazanci}:etby-l }benzerieÂ
J,5 t;rtiol .aad its complexes ·w-ith '('Mlif(1 J Fev 1 ), ed(J'l), and. :f.::I:g 01>-)
The ligand \VS preP..ated rin tWo steps' • fp I t}Je nrst stea -soJutiQil Qf
-saUcyla[deeyeq. ip methatt:oJ . re3ctcd lU1der reflux
... Show More