Preferred Language
Articles
/
jih-763
Solving System of Linear Fredholm Integral Equations of Second Kind Using Open Newton-Cotes Formulas

In this paper, the linear system of Fredholm integral equations is solving using Open Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to solve this system.  Compare the results of suggested method with the results of another method (closed Newton-Cotes formula)    Finally, at the end of each method, algorithms and programs developed and written in MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Efficient Iterative Method for Solving Korteweg-de Vries Equations

The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution

... Show More
Scopus (4)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Numerical and Analytical Solutions of Space-Time Fractional Partial Differential Equations by Using a New Double Integral Transform Method

  This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Block Method for SolvingState-Space Equations of Linear Continuous-Time Control Systems

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different type

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
1st Samarra International Conference For Pure And Applied Sciences (sicps2021): Sicps2021
Scopus Crossref
View Publication
Publication Date
Sat Oct 01 2016
Journal Name
International Journal Of Pure And Apllied Mathematics
Crossref (10)
Crossref
View Publication
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Sumudu Iterative Method for solving Nonlinear Partial Differential Equations

       In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.