In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented. The numerical solution of these equations is obtained by using Open Newton Cotes formula. The Open Newton Cotes formula is applied to find the optimum solution for this equation. The computer program is written in (MATLAB) language (version 6)
In this paper, first and second order sliding mode controllers are designed for a single link robotic arm actuated by two Pneumatic Artificial Muscles (PAMs). A new mathematical model for the arm has been developed based on the model of large scale pneumatic muscle actuator model. Uncertainty in parameters has been presented and tested for the two controllers. The simulation results of the second-order sliding mode controller proves to have a low tracking error and chattering effect as compared to the first order one. The verification has been done by using MATLAB and Simulink software.
In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
As of late, humankind has experienced radiation issues either computerized tomography (CT) or X-rays. In this investigation, we endeavor to limit the effect of examination hardware. To do this the medical image is cropping (cut and zoom) then represented the vascular network as a graph such that each contraction as the vertices and the vessel represented as an edges, the area of the coagulation was processed already, in the current search the shortest distance to reach to the place of the blood vessel clot is computed
In this paper, some necessary and sufficient conditions are obtained to ensure the oscillatory of all solutions of the first order impulsive neutral differential equations. Also, some results in the references have been improved and generalized. New lemmas are established to demonstrate the oscillation property. Special impulsive conditions associated with neutral differential equation are submitted. Some examples are given to illustrate the obtained results.
The aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.
The operator ψ has been introduced as an associated set-valued set function. Although it has importance for the study of minimal open sets as well as minimal I-open sets. As a result of this study, we introduce minimal I^*-open sets . In this study, several characterizations of minimal I^*-open sets are also investigated. This study also discusses the role of minimal I^*-open sets in the *-locally finite spaces. In an aspect of topological invariant, the homeomorphic images of minimal I^*-open set has been discussed here.
This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro
... Show MoreIn this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.
The ultimate goal of any sale contract is to maximize the combined returns of the parties, knowing that these returns are not realized (in long-term contracts) except in the final stages of the contract. Therefore, this requires the parties to the contract to leave some elements open, including the price, because the adoption of a fixed price and inflexible will not be appropriate to meet their desires when contracting, especially with ignorance of matters beyond their will and may affect the market conditions, and the possibility of modifying the fixed price through The elimination is very limited, especially when the parties to the contract are equally in terms of economic strength. Hence, in order to respond to market uncertainties, the
... Show More