Preferred Language
Articles
/
jih-756
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Some Fractional Partial Differential Equations by Invariant Subspace and Double Sumudu Transform Methods
...Show More Authors

      In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform ”double  Sumudu ”. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace method”. All results are illustrative numerically and graphically.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation
...Show More Authors

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
View Publication Preview PDF
Crossref