Preferred Language
Articles
/
jih-747
Essentially Quasi-Invertible Submodules and Essentially Quasi-Dedekind Modules
...Show More Authors

        Let R be a commutative ring with  identity . In this paper  we study  the concepts of  essentially quasi-invertible submodules and essentially  quasi-Dedekind modules  as  a generalization of  quasi-invertible submodules and quasi-Dedekind  modules  . Among the results that we obtain is the following : M  is an essentially  quasi-Dedekind  module if and only if M is aK-nonsingular module,where a module M is K-nonsingular if, for each  , Kerf ≤e M   implies   f = 0 .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
J-semi regular modules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a ring with identity and let <italic>M</italic> be a left R-module. <italic>M</italic> is called J-semiregular module if every cyclic submodule of <italic>M</italic> is J-lying over a projective summand of <italic>M</italic>, The aim of this paper is to introduce properties of J-semiregular module Especially, we give characterizations of J-semiregular module. On the other hand, the notion of J-semi hollow modules is studied as a generalization of semi hollow modules, finally <italic>F</italic>-J-semiregular modules is studied as a generalization of <italic>F</italic>-semiregular modules.</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
...Show More Authors
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely co-Hopfian Modules
...Show More Authors

  Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f Ë› End (M), Imf is pure in M and we give  some properties of this kind of modules.

View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
F-µ-Semiregular Modules
...Show More Authors

Let  R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of  and . M is called  F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Generalized Radical Lifting Modules
...Show More Authors

In this paper we introduce G-Rad-lifting module as aproper generalization of lifting module, some properties of this type of modules are investigated. We prove that if M is G-Rad- lifting and
, then
, and
are G-Rad- lifting, hence we Conclude the direct summand of G-Rad- lifting is also G-Rad- lifting. Also we prove that if M is a duo module with
and
are G- Rad- lifting then M is G-Rad- lifting.

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
On S*-Supplemented Modules
...Show More Authors

The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
ON M- Hollow modules
...Show More Authors

Let R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.

View Publication Preview PDF
Crossref
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Generalized-hollow lifting modules
...Show More Authors

Let R be any ring with identity, and let M be a unitary left R-module. A submodule K of M is called generalized coessential submodule of N in M, if Rad( ). A module M is called generalized hollow-lifting module, if every submodule N of M with is a hollow module, has a generalized coessential submodule of N in M that is a direct summand of M. In this paper, we study some properties of this type of modules.

View Publication Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely Goldie Extending Modules
...Show More Authors

An -module  is extending if every submodule of   is essential in a direct summand of . Following Clark, an -module  is purely extending if every submodule of   is essential in a pure submodule of . It is clear purely extending is generalization of extending modules. Following Birkenmeier and Tercan, an -module     is Goldie extending if, for each submodule      of , there is a direct summand D of such that . In this paper, we introduce and study class of modules which are proper generalization of both the purely extending modules and -extending modules. We call an -module  is purely Goldie extending if, for each , there is a pure submodule P of such that  . Many c

... Show More
View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Min (Max)-CS Modules
...Show More Authors

 In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.

View Publication Preview PDF