In this paper simulation technique plays a vital role to compare between two approaches Maximum Likelihood method and Developed Least Square method to estimate the parameters of Frechet Poisson Lindley Distribution Compound. by coding using Matlab software program. Also, under different sample sizes via mean square error. As the results which obtain that Maximum Likelihood Estimation method is better than Developed Least Square method to estimate these parameters to the proposed distribution.
In this paper, a Monte Carlo Simulation technique is used to compare the performance of the standard Bayes estimators of the reliability function of the one parameter exponential distribution .Three types of loss functions are adopted, namely, squared error loss function (SELF) ,Precautionary error loss function (PELF) andlinear exponential error loss function(LINEX) with informative and non- informative prior .The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators
This paper is interested in comparing the performance of the traditional methods to estimate parameter of exponential distribution (Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased Estimator) and the Bayes Estimator in the case of data to meet the requirement of exponential distribution and in the case away from the distribution due to the presence of outliers (contaminated values). Through the employment of simulation (Monte Carlo method) and the adoption of the mean square error (MSE) as criterion of statistical comparison between the performance of the three estimators for different sample sizes ranged between small, medium and large (n=5,10,25,50,100) and different cases (wit
... Show MoreThe present paper concern with minimax shrinkage estimator technique in order to estimate Burr X distribution shape parameter, when prior information about the real shape obtainable as original estimate while known scale parameter.
Derivation for Bias Ratio, Mean squared error and the Relative Efficiency equations.
Numerical results and conclusions for the expressions mentioned above were displayed. Comparisons for proposed estimator with most recent works were made.
The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreThe technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
Survival analysis is the analysis of data that are in the form of times from the origin of time until the occurrence of the end event, and in medical research, the origin of time is the date of registration of the individual or the patient in a study such as clinical trials to compare two types of medicine or more if the endpoint It is the death of the patient or the disappearance of the individual. The data resulting from this process is called survival times. But if the end is not death, the resulting data is called time data until the event. That is, survival analysis is one of the statistical steps and procedures for analyzing data when the adopted variable is time to event and time. It could be d
... Show MoreThis paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
The analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show More